Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 23 (2): 629-635

Copyright © 2003 by the American Society for Microbiology. All rights reserved.

The Tor Pathway Regulates Gene Expression by Linking Nutrient Sensing to Histone Acetylation

John R. Rohde and Maria E. Cardenas*

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710

Received for publication 6 September 2002. Revision received 22 October 2002. Accepted for publication 25 October 2002.

Abstract: The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.


* Corresponding author. Mailing address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, 322 CARL Bldg., Box 3546, Research Dr., Durham, NC 27710. Phone: (919) 684-2809. Fax: (919) 684-5458. E-mail: carde004{at}mc.duke.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Yeast AMPK Homolog SNF1 Regulates Acetyl Coenzyme A Homeostasis and Histone Acetylation.
M. Zhang, L. Galdieri, and A. Vancura (2013)
Mol. Cell. Biol. 33, 4701-4717
   Abstract »    Full Text »    PDF »
Yeast Phospholipase C Is Required for Normal Acetyl-CoA Homeostasis and Global Histone Acetylation.
L. Galdieri, J. Chang, S. Mehrotra, and A. Vancura (2013)
J. Biol. Chem. 288, 27986-27998
   Abstract »    Full Text »    PDF »
A non-canonical role for the C. elegans dosage compensation complex in growth and metabolic regulation downstream of TOR complex 2.
C. M. Webster, L. Wu, D. Douglas, and A. A. Soukas (2013)
Development 140, 3601-3612
   Abstract »    Full Text »    PDF »
Nutritional Control of Growth and Development in Yeast.
J. R. Broach (2012)
Genetics 192, 73-105
   Abstract »    Full Text »    PDF »
The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis.
H. Chen, M. Fan, L. M. Pfeffer, and R. N. Laribee (2012)
Nucleic Acids Res. 40, 6534-6546
   Abstract »    Full Text »    PDF »
Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.
M. C. Ortells, B. Morancho, K. Drews-Elger, B. Viollet, K. R. Laderoute, C. Lopez-Rodriguez, and J. Aramburu (2012)
Nucleic Acids Res. 40, 4368-4384
   Abstract »    Full Text »    PDF »
The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo.
B. Uprety, S. Lahudkar, S. Malik, and S. R. Bhaumik (2012)
Nucleic Acids Res. 40, 1969-1983
   Abstract »    Full Text »    PDF »
Metabolic cycling without cell division cycling in respiring yeast.
N. Slavov, J. Macinskas, A. Caudy, and D. Botstein (2011)
PNAS 108, 19090-19095
   Abstract »    Full Text »    PDF »
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.
A. Huber, S. L. French, H. Tekotte, S. Yerlikaya, M. Stahl, M. P. Perepelkina, M. Tyers, J. Rougemont, A. L. Beyer, and R. Loewith (2011)
EMBO J. 30, 3052-3064
   Abstract »    Full Text »    PDF »
Diverse environmental stresses elicit distinct responses at the level of pre-mRNA processing in yeast.
M. Bergkessel, G. B. Whitworth, and C. Guthrie (2011)
RNA 17, 1461-1478
   Abstract »    Full Text »    PDF »
Gcn4p-mediated transcriptional repression of ribosomal protein genes under amino-acid starvation.
Y. J. Joo, J.-H. Kim, U.-B. Kang, M.-H. Yu, and J. Kim (2011)
EMBO J. 30, 859-872
   Abstract »    Full Text »    PDF »
Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase.
I. Kaufmann, E. White, A. Azad, S. Marguerat, J. Bahler, and N. J. Proudfoot (2010)
Mol. Cell. Biol. 30, 3396-3410
   Abstract »    Full Text »    PDF »
Mtl1 Is Required to Activate General Stress Response through Tor1 and Ras2 Inhibition under Conditions of Glucose Starvation and Oxidative Stress.
M. I. Petkova, N. Pujol-Carrion, J. Arroyo, J. Garcia-Cantalejo, and M. Angeles de la Torre-Ruiz (2010)
J. Biol. Chem. 285, 19521-19531
   Abstract »    Full Text »    PDF »
Direct Transactivator-Transcription Factor IID (TFIID) Contacts Drive Yeast Ribosomal Protein Gene Transcription.
J. H. Layer, S. G. Miller, and P. A. Weil (2010)
J. Biol. Chem. 285, 15489-15499
   Abstract »    Full Text »    PDF »
Calorie restriction and the exercise of chromatin.
A. Vaquero and D. Reinberg (2009)
Genes & Dev. 23, 1849-1869
   Abstract »    Full Text »    PDF »
Eaf1 Is the Platform for NuA4 Molecular Assembly That Evolutionarily Links Chromatin Acetylation to ATP-Dependent Exchange of Histone H2A Variants.
A. Auger, L. Galarneau, M. Altaf, A. Nourani, Y. Doyon, R. T. Utley, D. Cronier, S. Allard, and J. Cote (2008)
Mol. Cell. Biol. 28, 2257-2270
   Abstract »    Full Text »    PDF »
Catalytic-Site Mutations in the MYST Family Histone Acetyltransferase Esa1.
P. V. Decker, D. Y. Yu, M. Iizuka, Q. Qiu, and M. M. Smith (2008)
Genetics 178, 1209-1220
   Abstract »    Full Text »    PDF »
Revisiting the role of yeast Sfp1 in ribosome biogenesis and cell size control: a chemostat study.
C. Cipollina, J. van den Brink, P. Daran-Lapujade, J. T. Pronk, M. Vai, and J. H. de Winde (2008)
Microbiology 154, 337-346
   Abstract »    Full Text »    PDF »
Hmo1 Is Required for TOR-Dependent Regulation of Ribosomal Protein Gene Transcription.
A. B. Berger, L. Decourty, G. Badis, U. Nehrbass, A. Jacquier, and O. Gadal (2007)
Mol. Cell. Biol. 27, 8015-8026
   Abstract »    Full Text »    PDF »
Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.
T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff (2006)
PNAS 103, 19033-19038
   Abstract »    Full Text »    PDF »
The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components.
A. Laferte, E. Favry, A. Sentenac, M. Riva, C. Carles, and S. Chedin (2006)
Genes & Dev. 20, 2030-2040
   Abstract »    Full Text »    PDF »
A Defect in Protein Farnesylation Suppresses a Loss of Schizosaccharomyces pombe tsc2+, a Homolog of the Human Gene Predisposing to Tuberous Sclerosis Complex.
Y. Nakase, K. Fukuda, Y. Chikashige, C. Tsutsumi, D. Morita, S. Kawamoto, M. Ohnuki, Y. Hiraoka, and T. Matsumoto (2006)
Genetics 173, 569-578
   Abstract »    Full Text »    PDF »
Role of Histone Deacetylase Rpd3 in Regulating rRNA Gene Transcription and Nucleolar Structure in Yeast.
M. L. Oakes, I. Siddiqi, S. L. French, L. Vu, M. Sato, J. P. Aris, A. L. Beyer, and M. Nomura (2006)
Mol. Cell. Biol. 26, 3889-3901
   Abstract »    Full Text »    PDF »
Novel Regulatory Properties of Saccharomyces cerevisiae Arp4..
F. Steinboeck, L. Krupanska, A. Bogusch, A. Kaufmann, and E. Heidenreich (2006)
J. Biochem. 139, 741-751
   Abstract »    Full Text »    PDF »
Targeted histone H4 acetylation via phosphoinositide 3-kinase- and p70s6-kinase-dependent pathways inhibits iNOS induction in mesangial cells.
Z. Yu and B. C. Kone (2006)
Am J Physiol Renal Physiol 290, F496-F502
   Abstract »    Full Text »    PDF »
Tor and Cyclic AMP-Protein Kinase A: Two Parallel Pathways Regulating Expression of Genes Required for Cell Growth.
S. A. Zurita-Martinez and M. E. Cardenas (2005)
Eukaryot. Cell 4, 63-71
   Abstract »    Full Text »    PDF »
Decreased Lifespan in the Absence of Expression of the Mitochondrial Small Heat Shock Protein Hsp22 in Drosophila.
G. Morrow, S. Battistini, P. Zhang, and R. M. Tanguay (2004)
J. Biol. Chem. 279, 43382-43385
   Abstract »    Full Text »    PDF »
TOR Controls Transcriptional and Translational Programs via Sap-Sit4 Protein Phosphatase Signaling Effectors.
J. R. Rohde, S. Campbell, S. A. Zurita-Martinez, N. S. Cutler, M. Ashe, and M. E. Cardenas (2004)
Mol. Cell. Biol. 24, 8332-8341
   Abstract »    Full Text »    PDF »
TOR Complex 1 Includes a Novel Component, Tco89p (YPL180w), and Cooperates with Ssd1p to Maintain Cellular Integrity in Saccharomyces cerevisiae.
A. Reinke, S. Anderson, J. M. McCaffery, J. Yates III, S. Aronova, S. Chu, S. Fairclough, C. Iverson, K. P. Wedaman, and T. Powers (2004)
J. Biol. Chem. 279, 14752-14762
   Abstract »    Full Text »    PDF »
Tor Pathway Regulates Rrn3p-dependent Recruitment of Yeast RNA Polymerase I to the Promoter but Does Not Participate in Alteration of the Number of Active Genes.
J. A. Claypool, S. L. French, K. Johzuka, K. Eliason, L. Vu, J. A. Dodd, A. L. Beyer, and M. Nomura (2004)
Mol. Biol. Cell 15, 946-956
   Abstract »    Full Text »    PDF »
Global Control of Histone Modification by the Anaphase-Promoting Complex.
V. Ramaswamy, J. S. Williams, K. M. Robinson, R. L. Sopko, and M. C. Schultz (2003)
Mol. Cell. Biol. 23, 9136-9149
   Abstract »    Full Text »    PDF »
Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR.
C. K. Tsang, P. G. Bertram, W. Ai, R. Drenan, and X. F. S. Zheng (2003)
EMBO J. 22, 6045-6056
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882