Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 23 (7): 2587-2599

Copyright © 2003 by the American Society for Microbiology. All rights reserved.

Coactivator-Dependent Acetylation Stabilizes Members of the SREBP Family of Transcription Factors

Valeria Giandomenico, Maria Simonsson, Eva Grönroos, and Johan Ericsson*

Ludwig Institute for Cancer Research, S-751 24 Uppsala, Sweden,

Received for publication 2 September 2002. Revision received 21 October 2002. Accepted for publication 7 January 2003.

Abstract: Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.

* Corresponding author. Mailing address: Ludwig Institute for Cancer Research, Box 595, Husargatan 3, S-751 24 Uppsala, Sweden. Phone: 46 18 16 04 05. Fax: 46 18 16 04 20. E-mail:{at}

PIASy-Mediated Sumoylation of SREBP1c Regulates Hepatic Lipid Metabolism upon Fasting Signaling.
G. Y. Lee, H. Jang, J. H. Lee, J. Y. Huh, S. Choi, J. Chung, and J. B. Kim (2014)
Mol. Cell. Biol. 34, 926-938
   Abstract »    Full Text »    PDF »
Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6.
R. Tao, X. Xiong, R. A. DePinho, C.-X. Deng, and X. C. Dong (2013)
J. Lipid Res. 54, 2745-2753
   Abstract »    Full Text »    PDF »
The Diversity of Histone Versus Nonhistone Sirtuin Substrates.
P. Martinez-Redondo and A. Vaquero (2013)
Genes & Cancer
   Abstract »    Full Text »    PDF »
Transcriptional Co-activator p300 Maintains Basal Hepatic Gluconeogenesis.
L. He, K. Naik, S. Meng, J. Cao, A. R. Sidhaye, A. Ma, S. Radovick, and F. E. Wondisford (2012)
J. Biol. Chem. 287, 32069-32077
   Abstract »    Full Text »    PDF »
Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis.
Y. Liu, D. Zhou, F. Zhang, Y. Tu, Y. Xia, H. Wang, B. Zhou, Y. Zhang, J. Wu, X. Gao, et al. (2012)
J. Lipid Res. 53, 358-367
   Abstract »    Full Text »    PDF »
Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation.
C. Zhang, P. W. Majerus, and M. P. Wilson (2012)
PNAS 109, 2290-2295
   Abstract »    Full Text »    PDF »
Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD+?.
C. Canto and J. Auwerx (2012)
Pharmacol. Rev. 64, 166-187
   Abstract »    Full Text »    PDF »
SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism.
B. Ponugoti, D.-H. Kim, Z. Xiao, Z. Smith, J. Miao, M. Zang, S.-Y. Wu, C.-M. Chiang, T. D. Veenstra, and J. K. Kemper (2010)
J. Biol. Chem. 285, 33959-33970
   Abstract »    Full Text »    PDF »
Genetic connections between neurological disorders and cholesterol metabolism.
I. Bjorkhem, V. Leoni, and S. Meaney (2010)
J. Lipid Res. 51, 2489-2503
   Abstract »    Full Text »    PDF »
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP.
A. K. Walker, F. Yang, K. Jiang, J.-Y. Ji, J. L. Watts, A. Purushotham, O. Boss, M. L. Hirsch, S. Ribich, J. J. Smith, et al. (2010)
Genes & Dev. 24, 1403-1417
   Abstract »    Full Text »    PDF »
Pathogenesis of alcoholic liver disease: the role of nuclear receptors.
M. A. Gyamfi and Y.-J. Y. Wan (2010)
Experimental Biology and Medicine 235, 547-560
   Abstract »    Full Text »    PDF »
Acetylation and activation of STAT3 mediated by nuclear translocation of CD44.
J.-L. Lee, M.-J. Wang, and J.-Y. Chen (2009)
J. Cell Biol. 185, 949-957
   Abstract »    Full Text »    PDF »
Tax1BP1 Interacts with Papillomavirus E2 and Regulates E2-Dependent Transcription and Stability.
X. Wang, S. R. Naidu, F. Sverdrup, and E. J. Androphy (2009)
J. Virol. 83, 2274-2284
   Abstract »    Full Text »    PDF »
A Phosphorylation Cascade Controls the Degradation of Active SREBP1.
M. T. Bengoechea-Alonso and J. Ericsson (2009)
J. Biol. Chem. 284, 5885-5895
   Abstract »    Full Text »    PDF »
Autoacetylation Regulates P/CAF Nuclear Localization.
N. Blanco-Garcia, E. Asensio-Juan, X. de la Cruz, and M. A. Martinez-Balbas (2009)
J. Biol. Chem. 284, 1343-1352
   Abstract »    Full Text »    PDF »
Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution.
S. Ray, C. Lee, T. Hou, I. Boldogh, and A. R. Brasier (2008)
Nucleic Acids Res. 36, 4510-4520
   Abstract »    Full Text »    PDF »
Involvement of mammalian sirtuin 1 in the action of ethanol in the liver.
M. You, X. Liang, J. M. Ajmo, and G. C. Ness (2008)
Am J Physiol Gastrointest Liver Physiol 294, G892-G898
   Abstract »    Full Text »    PDF »
Mammalian Sirtuin 1 Is Involved in the Protective Action of Dietary Saturated Fat against Alcoholic Fatty Liver in Mice.
M. You, Q. Cao, X. Liang, J. M. Ajmo, and G. C. Ness (2008)
J. Nutr. 138, 497-501
   Abstract »    Full Text »    PDF »
Transforming Growth Factor- Regulates DNA Binding Activity of Transcription Factor Fli1 by p300/CREB-binding Protein-associated Factor-dependent Acetylation.
Y. Asano, J. Czuwara, and M. Trojanowska (2007)
J. Biol. Chem. 282, 34672-34683
   Abstract »    Full Text »    PDF »
The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP.
Y. Cherasse, A.-C. Maurin, C. Chaveroux, C. Jousse, V. Carraro, L. Parry, C. Deval, C. Chambon, P. Fafournoux, and A. Bruhat (2007)
Nucleic Acids Res. 35, 5954-5965
   Abstract »    Full Text »    PDF »
Hepatitis C Virus Induces Proteolytic Cleavage of Sterol Regulatory Element Binding Proteins and Stimulates Their Phosphorylation via Oxidative Stress.
G. Waris, D. J. Felmlee, F. Negro, and A. Siddiqui (2007)
J. Virol. 81, 8122-8130
   Abstract »    Full Text »    PDF »
The DNA Binding Activities of Smad2 and Smad3 Are Regulated by Coactivator-mediated Acetylation.
M. Simonsson, M. Kanduri, E. Gronroos, C.-H. Heldin, and J. Ericsson (2006)
J. Biol. Chem. 281, 39870-39880
   Abstract »    Full Text »    PDF »
Phosphorylation and Ubiquitination of the Transcription Factor Sterol Regulatory Element-binding Protein-1 in Response to DNA Binding.
T. Punga, M. T. Bengoechea-Alonso, and J. Ericsson (2006)
J. Biol. Chem. 281, 25278-25286
   Abstract »    Full Text »    PDF »
p300 Modulates ATF4 Stability and Transcriptional Activity Independently of Its Acetyltransferase Domain.
I. Lassot, E. Estrabaud, S. Emiliani, M. Benkirane, R. Benarous, and F. Margottin-Goguet (2005)
J. Biol. Chem. 280, 41537-41545
   Abstract »    Full Text »    PDF »
Modulation of Androgen Receptor Transactivation by the SWI3-Related Gene Product (SRG3) in Multiple Ways.
C. Y. Hong, J. H. Suh, K. Kim, E.-Y. Gong, S. H. Jeon, M. Ko, R. H. Seong, H. B. Kwon, and K. Lee (2005)
Mol. Cell. Biol. 25, 4841-4852
   Abstract »    Full Text »    PDF »
The Balance between Acetylation and Deacetylation Controls Smad7 Stability.
M. Simonsson, C.-H. Heldin, J. Ericsson, and E. Gronroos (2005)
J. Biol. Chem. 280, 21797-21803
   Abstract »    Full Text »    PDF »
Spatial Distribution and Function of Sterol Regulatory Element-Binding Protein 1a and 2 Homo- and Heterodimers by In Vivo Two-Photon Imaging and Spectroscopy Fluorescence Resonance Energy Transfer.
A. Zoumi, S. Datta, L.-H. L. Liaw, C. J. Wu, G. Manthripragada, T. F. Osborne, and V. J. LaMorte (2005)
Mol. Cell. Biol. 25, 2946-2956
   Abstract »    Full Text »    PDF »
Stability of the Hepatocyte Nuclear Factor 6 Transcription Factor Requires Acetylation by the CREB-binding Protein Coactivator.
F. M. Rausa III, D. E. Hughes, and R. H. Costa (2004)
J. Biol. Chem. 279, 43070-43076
   Abstract »    Full Text »    PDF »
Site-specific Acetylation of the Fetal Globin Activator NF-E4 Prevents Its Ubiquitination and Regulates Its Interaction with the Histone Deacetylase, HDAC1.
Q. Zhao, H. Cumming, L. Cerruti, J. M. Cunningham, and S. M. Jane (2004)
J. Biol. Chem. 279, 41477-41486
   Abstract »    Full Text »    PDF »
Starvation and Feeding a High-Carbohydrate, Low-Fat Diet Regulate the Expression Sterol Regulatory Element-Binding Protein-1 in Chickens.
Y. Zhang and F. B. Hillgartner (2004)
J. Nutr. 134, 2205-2210
   Abstract »    Full Text »    PDF »
Platelet-derived Growth Factor Stimulates Membrane Lipid Synthesis Through Activation of Phosphatidylinositol 3-Kinase and Sterol Regulatory Element-binding Proteins.
J.-B. Demoulin, J. Ericsson, A. Kallin, C. Rorsman, L. Ronnstrand, and C.-H. Heldin (2004)
J. Biol. Chem. 279, 35392-35402
   Abstract »    Full Text »    PDF »
YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress.
E. Gronroos, A. A. Terentiev, T. Punga, and J. Ericsson (2004)
PNAS 101, 12165-12170
   Abstract »    Full Text »    PDF »
Involvement of Sp1 and SREBP-1a in transcriptional activation of the LDL receptor gene by insulin and LH in cultured porcine granulosa-luteal cells.
N. Sekar and J. D. Veldhuis (2004)
Am J Physiol Endocrinol Metab 287, E128-E135
   Abstract »    Full Text »    PDF »
The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.
X.-J. Yang (2004)
Nucleic Acids Res. 32, 959-976
   Abstract »    Full Text »    PDF »
Twist2, a novel ADD1/SREBP1c interacting protein, represses the transcriptional activity of ADD1/SREBP1c.
Y. S. Lee, H. H. Lee, J. Park, E. J. Yoo, C. A. Glackin, Y. I. Choi, S. H. Jeon, R. H. Seong, S. D. Park, and J. B. Kim (2003)
Nucleic Acids Res. 31, 7165-7174
   Abstract »    Full Text »    PDF »
Transcription-dependent degradation controls the stability of the SREBP family of transcription factors.
A. Sundqvist and J. Ericsson (2003)
PNAS 100, 13833-13838
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882