Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 23 (8): 2709-2719

Copyright © 2003 by the American Society for Microbiology. All rights reserved.

Endogenous Assays of DNA Methyltransferases: Evidence for Differential Activities of DNMT1, DNMT2, and DNMT3 in Mammalian Cells In Vivo

Kui Liu, Yun Fei Wang, Carmen Cantemir, and Mark T. Muller*

Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210

Received for publication 17 December 2002. Accepted for publication 14 January 2003.

Abstract: While CpG methylation can be readily analyzed at the DNA sequence level in wild-type and mutant cells, the actual DNA (cytosine-5) methyltransferases (DNMTs) responsible for in vivo methylation on genomic DNA are less tractable. We used an antibody-based method to identify specific endogenous DNMTs (DNMT1, DNMT1b, DNMT2, DNMT3a, and DNMT3b) that stably and selectively bind to genomic DNA containing 5-aza-2'-deoxycytidine (aza-dC) in vivo. Selective binding to aza-dC-containing DNA suggests that the engaged DNMT is catalytically active in the cell. DNMT1b is a splice variant of the predominant maintenance activity DNMT1, while DNMT2 is a well-conserved protein with homologs in plants, yeast, Drosophila, humans, and mice. Despite the presence of motifs essential for transmethylation activity, catalytic activity of DNMT2 has never been reported. The data here suggest that DNMT2 is active in vivo when the endogenous genome is the target, both in human and mouse cell lines. We quantified relative global genomic activity of DNMT1, -2, -3a, and -3b in a mouse teratocarcinoma cell line. DNMT1 and -3b displayed the greatest in vivo binding avidity for aza-dC-containing genomic DNA in these cells. This study demonstrates that individual DNMTs can be tracked and that their binding to genomic DNA can be quantified in mammalian cells in vivo. The different DNMTs display a wide spectrum of genomic DNA-directed activity. The use of an antibody-based tracking method will allow specific DNMTs and their DNA targets to be recovered and analyzed in a physiological setting in chromatin.


* Corresponding author. Mailing address: Department of Molecular Genetics, Ohio State University, 484 West 12th Ave., Columbus, OH 43210. Phone: (614) 292-1914. Fax: (614) 292-4702. E-mail: muller.2{at}osu.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs.
M. I. Shoulkamy, T. Nakano, M. Ohshima, R. Hirayama, A. Uzawa, Y. Furusawa, and H. Ide (2012)
Nucleic Acids Res. 40, e143
   Abstract »    Full Text »    PDF »
DNA Methyltransferase 1-associated Protein (DMAP1) Is a Co-repressor That Stimulates DNA Methylation Globally and Locally at Sites of Double Strand Break Repair.
G. E. Lee, J. H. Kim, M. Taylor, and M. T. Muller (2010)
J. Biol. Chem. 285, 37630-37640
   Abstract »    Full Text »    PDF »
DNA methyltransferases and methyl-binding proteins of mammals.
J. Lan, S. Hua, X. He, and Y. Zhang (2010)
Acta Biochim Biophys Sin 42, 243-252
   Abstract »    Full Text »    PDF »
Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting.
L. I. Sanchez-Abarca, S. Gutierrez-Cosio, C. Santamaria, T. Caballero-Velazquez, B. Blanco, C. Herrero-Sanchez, J. L. Garcia, S. Carrancio, P. Hernandez-Campo, F. J. Gonzalez, et al. (2010)
Blood 115, 107-121
   Abstract »    Full Text »    PDF »
Homologous Recombination but Not Nucleotide Excision Repair Plays a Pivotal Role in Tolerance of DNA-Protein Cross-links in Mammalian Cells.
T. Nakano, A. Katafuchi, M. Matsubara, H. Terato, T. Tsuboi, T. Masuda, T. Tatsumoto, S. P. Pack, K. Makino, D. L. Croteau, et al. (2009)
J. Biol. Chem. 284, 27065-27076
   Abstract »    Full Text »    PDF »
DNA Methylation Inhibitor 5-Aza-2'-Deoxycytidine Induces Reversible Genome-Wide DNA Damage That Is Distinctly Influenced by DNA Methyltransferases 1 and 3B.
S. S. Palii, B. O. Van Emburgh, U. T. Sankpal, K. D. Brown, and K. D. Robertson (2008)
Mol. Cell. Biol. 28, 752-771
   Abstract »    Full Text »    PDF »
{Delta}DNMT3B Variants Regulate DNA Methylation in a Promoter-Specific Manner.
J. Wang, M. Bhutani, A. K. Pathak, W. Lang, H. Ren, J. Jelinek, R. He, L. Shen, J.-P. Issa, and L. Mao (2007)
Cancer Res. 67, 10647-10652
   Abstract »    Full Text »    PDF »
5-Azacytidine Induced Methyltransferase-DNA Adducts Block DNA Replication In vivo.
H. K. Kuo, J. D. Griffith, and K. N. Kreuzer (2007)
Cancer Res. 67, 8248-8254
   Abstract »    Full Text »    PDF »
Evolution of Gene Sequence in Response to Chromosomal Location.
C. Diaz-Castillo and K. G. Golic (2007)
Genetics 177, 359-374
   Abstract »    Full Text »    PDF »
Cyclophilin A Protects Peg3 from Hypermethylation and Inactive Histone Modification.
Y.-C. Lu, J. Song, H.-Y. Cho, G. Fan, K. K. Yokoyama, and R. Chiu (2006)
J. Biol. Chem. 281, 39081-39087
   Abstract »    Full Text »    PDF »
ChIP-chip Comes of Age for Genome-wide Functional Analysis..
J. Wu, L. T. Smith, C. Plass, and T. H-M. Huang (2006)
Cancer Res. 66, 6899-6902
   Abstract »    Full Text »    PDF »
Different signaling pathways inhibit DNA methylation activity and up-regulate IFN-{gamma} in human lymphocytes.
V. Bonilla-Henao, R. Martinez, F. Sobrino, and E. Pintado (2005)
J. Leukoc. Biol. 78, 1339-1346
   Abstract »    Full Text »    PDF »
Genomic imprinting and reproduction.
A K E Swales and N Spears (2005)
Reproduction 130, 389-399
   Abstract »    Full Text »    PDF »
Epigenetic Reactivation of Tumor Suppressor Genes by a Novel Small-Molecule Inhibitor of Human DNA Methyltransferases.
B. Brueckner, R. Garcia Boy, P. Siedlecki, T. Musch, H. C. Kliem, P. Zielenkiewicz, S. Suhai, M. Wiessler, and F. Lyko (2005)
Cancer Res. 65, 6305-6311
   Abstract »    Full Text »    PDF »
5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal.
K. Ghoshal, J. Datta, S. Majumder, S. Bai, H. Kutay, T. Motiwala, and S. T. Jacob (2005)
Mol. Cell. Biol. 25, 4727-4741
   Abstract »    Full Text »    PDF »
Mechanism of Stimulation of Catalytic Activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L.
H. Gowher, K. Liebert, A. Hermann, G. Xu, and A. Jeltsch (2005)
J. Biol. Chem. 280, 13341-13348
   Abstract »    Full Text »    PDF »
Oncogene regulation of tumor suppressor genes in tumorigenesis.
J. Sung, J. Turner, S. McCarthy, S. Enkemann, C. G. Li, P. Yan, T. Huang, and T. J. Yeatman (2005)
Carcinogenesis 26, 487-494
   Abstract »    Full Text »    PDF »
The Value of DNA Methylation Analysis in Basic, Initial Toxicity Assessments.
R. E. Watson, J. M. McKim, G. L. Cockerell, and J. I. Goodman (2004)
Toxicol. Sci. 79, 178-188
   Abstract »    Full Text »    PDF »
RGS6 Interacts with DMAP1 and DNMT1 and Inhibits DMAP1 Transcriptional Repressor Activity.
Z. Liu and R. A. Fisher (2004)
J. Biol. Chem. 279, 14120-14128
   Abstract »    Full Text »    PDF »
A Dnmt2-like protein mediates DNA methylation in Drosophila.
N. Kunert, J. Marhold, J. Stanke, D. Stach, and F. Lyko (2003)
Development 130, 5083-5090
   Abstract »    Full Text »    PDF »
The Eukaryotic DNMT2 Genes Encode a New Class of Cytosine-5 DNA Methyltransferases.
L.-Y. Tang, M. N. Reddy, V. Rasheva, T.-L. Lee, M.-J. Lin, M.-S. Hung, and C.-K. J. Shen (2003)
J. Biol. Chem. 278, 33613-33616
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882