Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 24 (16): 7059-7071

Copyright © 2004 by the American Society for Microbiology. All rights reserved.

Phosphorylation of Y845 on the Epidermal Growth Factor Receptor Mediates Binding to the Mitochondrial Protein Cytochrome c Oxidase Subunit II

Julie L. Boerner, Michelle L. Demory, Corinne Silva, and Sarah J. Parsons*

Department of Microbiology and Cancer Center at the University of Virginia Health System, Charlottesville, Virginia 22908

Received for publication 2 July 2003. Revision received 28 August 2003. Accepted for publication 21 May 2004.

Abstract: When co-overexpressed, the epidermal growth factor receptor (EGFR) and c-Src cooperate to cause synergistic increases in EGF-induced DNA synthesis, soft agar colony growth, and tumor formation in nude mice. This synergy is dependent upon c-Src-mediated phosphorylation of a unique tyrosine on the EGFR, namely, tyrosine 845 (Y845). Phenylalanine substitution of Y845 (Y845F) was found to inhibit EGF-induced DNA synthesis without affecting the catalytic activity of the receptor or its ability to phosphorylate Shc or activate mitogen-activated protein kinase. These results suggest that synergism may occur through alternate signaling pathways mediated by phosphorylated Y845 (pY845). One such pathway involves the transcription factor Stat5b. Here we describe another pathway that involves cytochrome c oxidase subunit II (CoxII). CoxII was identified as a specific binding partner of a pY845-containing peptide in a phage display screen. EGF-dependent binding of CoxII to the wild type but not to the mutant Y845F-EGFR was confirmed by coimmunoprecipitation experiments. This association also required the kinase activity of c-Src. Confocal microscopy, as well as biochemical fractionation, indicated that the EGFR translocates to the mitochondria after EGF stimulation, where it colocalizes with CoxII. Such translocation required the catalytic activity of the receptor but not phosphorylation of Y845. However, ectopic expression of the Y845F-EGFR prevented the EGF from protecting MDA-MB-231 breast cancer cells from adriamycin-induced apoptosis, whereas two mutants of Stat5b, a dominant-interfering mutant (DNstat5b) and a tyrosine mutation at 699 (Y699F-Stat5b) did not. Taken together, these data suggest that, through the ability of EGFR to translocate to the mitochondria, the binding of proteins such as CoxII to pY845 on the EGFR may positively regulate survival pathways that contribute to oncogenesis.


* Corresponding author. Mailing address: Department of Microbiology, University of Virginia, Jordan Hall 2-11, P.O. Box 800734, Charlottesville, VA 22908. Phone: (434) 924-2352. Fax: (434) 982-0689. E-mail: sap{at}virginia.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases.
M.-C. Landry, C. Champagne, M.-C. Boulanger, A. Jette, M. Fuchs, C. Dziengelewski, and J. N. Lavoie (2014)
J. Biol. Chem. 289, 2230-2249
   Abstract »    Full Text »    PDF »
Phosphorylation of the Activation Loop Tyrosine 823 in c-Kit Is Crucial for Cell Survival and Proliferation.
S. Agarwal, J. U. Kazi, and L. Ronnstrand (2013)
J. Biol. Chem. 288, 22460-22468
   Abstract »    Full Text »    PDF »
Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.
R. Covian and R. S. Balaban (2012)
Am J Physiol Heart Circ Physiol 303, H940-H966
   Abstract »    Full Text »    PDF »
Emerging insights into the molecular and cellular basis of glioblastoma.
G. P. Dunn, M. L. Rinne, J. Wykosky, G. Genovese, S. N. Quayle, I. F. Dunn, P. K. Agarwalla, M. G. Chheda, B. Campos, A. Wang, et al. (2012)
Genes & Dev. 26, 756-784
   Abstract »    Full Text »    PDF »
Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism.
A. N. Cvrljevic, D. Akhavan, M. Wu, P. Martinello, F. B. Furnari, A. J. Johnston, D. Guo, L. Pike, W. K. Cavenee, A. M. Scott, et al. (2011)
J. Cell Sci. 124, 2938-2950
   Abstract »    Full Text »    PDF »
Mitochondrially localized EGFR is independent of its endocytosis and associates with cell viability.
Y. Yao, G. Wang, Z. Li, B. Yan, Y. Guo, X. Jiang, and Z. Xi (2010)
Acta Biochim Biophys Sin 42, 763-770
   Abstract »    Full Text »    PDF »
Activation by Tyrosine Phosphorylation as a Prerequisite for Protein Kinase C{zeta} to Mediate Epidermal Growth Factor Receptor Signaling to ERK.
C. Valkova, C. Mertens, S. Weisheit, D. Imhof, and C. Liebmann (2010)
Mol. Cancer Res. 8, 783-797
   Abstract »    Full Text »    PDF »
Function of activation loop tyrosine phosphorylation in the mechanism of c-Kit auto-activation and its implication in sunitinib resistance.
J. P. DiNitto, G. D. Deshmukh, Y. Zhang, S. L. Jacques, R. Coli, J. W. Worrall, W. Diehl, J. M. English, and J. C. Wu (2010)
J. Biochem. 147, 601-609
   Abstract »    Full Text »    PDF »
Epidermal Growth Factor Receptor Translocation to the Mitochondria: REGULATION AND EFFECT.
M. L. Demory, J. L. Boerner, R. Davidson, W. Faust, T. Miyake, I. Lee, M. Huttemann, R. Douglas, G. Haddad, and S. J. Parsons (2009)
J. Biol. Chem. 284, 36592-36604
   Abstract »    Full Text »    PDF »
Role of Cell Cycle in Epidermal Growth Factor Receptor Inhibitor-Mediated Radiosensitization.
A. Ahsan, S. M. Hiniker, M. A. Davis, T. S. Lawrence, and M. K. Nyati (2009)
Cancer Res. 69, 5108-5114
   Abstract »    Full Text »    PDF »
Src as a potential therapeutic target in non-small-cell lung cancer.
G. Giaccone and P. A. Zucali (2008)
Ann. Onc. 19, 1219-1223
   Abstract »    Full Text »    PDF »
Species differences in renal Src activity direct EGF receptor regulation in life or death response to EGF.
S. C. Kiley and R. L. Chevalier (2007)
Am J Physiol Renal Physiol 293, F895-F903
   Abstract »    Full Text »    PDF »
Transforming Growth Factor {alpha} Dependent Cancer Progression Is Modulated by Muc1.
M. R. Pochampalli, B. G. Bitler, and J. A. Schroeder (2007)
Cancer Res. 67, 6591-6598
   Abstract »    Full Text »    PDF »
Modeling Breast Cancer-Associated c-Src and EGFR Overexpression in Human MECs: c-Src and EGFR Cooperatively Promote Aberrant Three-dimensional Acinar Structure and Invasive Behavior.
M. Dimri, M. Naramura, L. Duan, J. Chen, C. Ortega-Cava, G. Chen, R. Goswami, N. Fernandes, Q. Gao, G. P. Dimri, et al. (2007)
Cancer Res. 67, 4164-4172
   Abstract »    Full Text »    PDF »
Role of the Sec61 Translocon in EGF Receptor Trafficking to the Nucleus and Gene Expression.
H.-J. Liao and G. Carpenter (2007)
Mol. Biol. Cell 18, 1064-1072
   Abstract »    Full Text »    PDF »
Physical and Functional Interactions between Cas and c-Src Induce Tamoxifen Resistance of Breast Cancer Cells through Pathways Involving Epidermal Growth Factor Receptor and Signal Transducer and Activator of Transcription 5b..
R. B. Riggins, K. S. Thomas, H. Q. Ta, J. Wen, R. J. Davis, N. R. Schuh, S. S. Donelan, K. A. Owen, M. A. Gibson, M. A. Shupnik, et al. (2006)
Cancer Res. 66, 7007-7015
   Abstract »    Full Text »    PDF »
Mitochondrial AKAP121 Links cAMP and src Signaling to Oxidative Metabolism.
A. Livigni, A. Scorziello, S. Agnese, A. Adornetto, A. Carlucci, C. Garbi, I. Castaldo, L. Annunziato, E. V. Avvedimento, and A. Feliciello (2006)
Mol. Biol. Cell 17, 263-271
   Abstract »    Full Text »    PDF »
Phosphotyrosine Signaling Networks in Epidermal Growth Factor Receptor Overexpressing Squamous Carcinoma Cells.
A. Thelemann, F. Petti, G. Griffin, K. Iwata, T. Hunt, T. Settinari, D. Fenyo, N. Gibson, and J. D. Haley (2005)
Mol. Cell. Proteomics 4, 356-376
   Abstract »    Full Text »    PDF »
cAMP-dependent Tyrosine Phosphorylation of Subunit I Inhibits Cytochrome c Oxidase Activity.
I. Lee, A. R. Salomon, S. Ficarro, I. Mathes, F. Lottspeich, L. I. Grossman, and M. Huttemann (2005)
J. Biol. Chem. 280, 6094-6100
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882