Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 24 (9): 3849-3859

Copyright © 2004 by the American Society for Microbiology. All rights reserved.

GIT1 Activates p21-Activated Kinase through a Mechanism Independent of p21 Binding

Tsui-Han Loo,1 Yuen-Wai Ng,1 Louis Lim,1,2 and Ed Manser1*

GSK-IMCB Group, Institute of Molecular and Cell Biology, Singapore 117609, Singapore,1 Institute of Neurology, University College London, London WC1N 1PJ, United Kingdom2

Received for publication 5 August 2003. Revision received 23 September 2003. Accepted for publication 30 January 2004.

Abstract: p21-activated kinases (PAKs) associate with a guanine nucleotide exchange factor, Pak-interacting exchange factor (PIX), which in turn binds the paxillin-associated adaptor GIT1 that targets the complex to focal adhesions. Here, a detailed structure-function analysis of GIT1 reveals how this multidomain adaptor also participates in activation of PAK. Kinase activation does not occur via Cdc42 or Rac1 GTPase binding to PAK. The ability of GIT1 to stimulate {alpha}PAK autophosphorylation requires the participation of the GIT N-terminal Arf-GAP domain but not Arf-GAP activity and involves phosphorylation of PAK at residues common to Cdc42-mediated activation. Thus, the activation of PAK at adhesion complexes involves a complex interplay between the kinase, Rho GTPases and protein partners that provide localization cues.


* Corresponding author. Mailing address: GSK-IMCB Group, Institute of Molecular and Cell Biology, 30 Medical Dr., Singapore 117609, Singapore. Phone: (65) 6874-6167. Fax: (65) 6774-0742. E-mail: mcbmansr{at}imcb.a-star.edu.sg.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Paxillin kinase linker (PKL) regulates Vav2 signaling during cell spreading and migration.
M. C. Jones, K. Machida, B. J. Mayer, and C. E. Turner (2013)
Mol. Biol. Cell 24, 1882-1894
   Abstract »    Full Text »    PDF »
Redundant Canonical and Noncanonical Caenorhabditis elegans p21-Activated Kinase Signaling Governs Distal Tip Cell Migrations.
E. C. Peters, A. J. Gossett, B. Goldstein, C. J. Der, and D. J. Reiner (2013)
g3 3, 181-195
   Abstract »    Full Text »    PDF »
GIT1 Phosphorylation on Serine 46 by PKD3 Regulates Paxillin Trafficking and Cellular Protrusive Activity.
B. Huck, R. Kemkemer, M. Franz-Wachtel, B. Macek, A. Hausser, and M. A. Olayioye (2012)
J. Biol. Chem. 287, 34604-34613
   Abstract »    Full Text »    PDF »
The Adaptor Protein and Arf GTPase-activating Protein Cat-1/Git-1 Is Required for Cellular Transformation.
S. M. Yoo, M. A. Antonyak, and R. A. Cerione (2012)
J. Biol. Chem. 287, 31462-31470
   Abstract »    Full Text »    PDF »
Sorting Nexin 27 Protein Regulates Trafficking of a p21-activated Kinase (PAK) Interacting Exchange Factor ({beta}-Pix)-G Protein-coupled Receptor Kinase Interacting Protein (GIT) Complex via a PDZ Domain Interaction.
J. L. Valdes, J. Tang, M. I. McDermott, J.-C. Kuo, S. P. Zimmerman, S. M. Wincovitch, C. M. Waterman, S. L. Milgram, and M. P. Playford (2011)
J. Biol. Chem. 286, 39403-39416
   Abstract »    Full Text »    PDF »
Syntaxin 1B Suppresses Macropinocytosis and Semaphorin 3A-Induced Growth Cone Collapse.
H. Kabayama, M. Takeuchi, M. Taniguchi, N. Tokushige, S. Kozaki, A. Mizutani, T. Nakamura, and K. Mikoshiba (2011)
J. Neurosci. 31, 7357-7364
   Abstract »    Full Text »    PDF »
Phosphorylation of the Cool-1/{beta}-Pix Protein Serves as a Regulatory Signal for the Migration and Invasive Activity of Src-transformed Cells.
Q. Feng, D. Baird, S. Yoo, M. Antonyak, and R. A. Cerione (2010)
J. Biol. Chem. 285, 18806-18816
   Abstract »    Full Text »    PDF »
Identification of MYO18A as a Novel Interacting Partner of the PAK2/{beta}PIX/GIT1 Complex and Its Potential Function in Modulating Epithelial Cell Migration.
R.-M. Hsu, M.-H. Tsai, Y.-J. Hsieh, P.-C. Lyu, and J.-S. Yu (2010)
Mol. Biol. Cell 21, 287-301
   Abstract »    Full Text »    PDF »
Stat3 promotes directional cell migration by regulating Rac1 activity via its activator {beta}PIX.
T. S. Teng, B. Lin, E. Manser, D. C. H. Ng, and X. Cao (2009)
J. Cell Sci. 122, 4150-4159
   Abstract »    Full Text »    PDF »
Dissecting Activation of the PAK1 Kinase at Protrusions in Living Cells.
M. C. Parrini, J. Camonis, M. Matsuda, and J. de Gunzburg (2009)
J. Biol. Chem. 284, 24133-24143
   Abstract »    Full Text »    PDF »
Diacylglycerol Kinase {zeta} Regulates Actin Cytoskeleton Reorganization through Dissociation of Rac1 from RhoGDI.
H. Abramovici, P. Mojtabaie, R. J. Parks, X.-P. Zhong, G. A. Koretzky, M. K. Topham, and S. H. Gee (2009)
Mol. Biol. Cell 20, 2049-2059
   Abstract »    Full Text »    PDF »
Scrib regulates PAK activity during the cell migration process.
S. Nola, M. Sebbagh, S. Marchetto, N. Osmani, C. Nourry, S. Audebert, C. Navarro, R. Rachel, M. Montcouquiol, N. Sans, et al. (2008)
Hum. Mol. Genet. 17, 3552-3565
   Abstract »    Full Text »    PDF »
PAK Is Regulated by PI3K, PIX, CDC42, and PP2C{alpha} and Mediates Focal Adhesion Turnover in the Hyperosmotic Stress-induced p38 Pathway.
P. M. Chan, L. Lim, and E. Manser (2008)
J. Biol. Chem. 283, 24949-24961
   Abstract »    Full Text »    PDF »
Paxillin comes of age.
N. O. Deakin and C. E. Turner (2008)
J. Cell Sci. 121, 2435-2444
   Abstract »    Full Text »    PDF »
GIT1 Paxillin-binding Domain Is a Four-helix Bundle, and It Binds to Both Paxillin LD2 and LD4 Motifs.
Z. M. Zhang, J. A. Simmerman, C. D. Guibao, and J. J. Zheng (2008)
J. Biol. Chem. 283, 18685-18693
   Abstract »    Full Text »    PDF »
Identification of an Intramolecular Interaction Important for the Regulation of GIT1 Functions.
A. Totaro, S. Paris, C. Asperti, and I. de Curtis (2007)
Mol. Biol. Cell 18, 5124-5138
   Abstract »    Full Text »    PDF »
A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish.
J. Liu, S. D. Fraser, P. W. Faloon, E. L. Rollins, J. Vom Berg, O. Starovic-Subota, A. L. Laliberte, J.-N. Chen, F. C. Serluca, and S. J. Childs (2007)
PNAS 104, 13990-13995
   Abstract »    Full Text »    PDF »
Localized Activation of p21-Activated Kinase Controls Neuronal Polarity and Morphology.
T. Jacobs, F. Causeret, Y. V. Nishimura, M. Terao, A. Norman, M. Hoshino, and M. Nikolic (2007)
J. Neurosci. 27, 8604-8615
   Abstract »    Full Text »    PDF »
Identification of phosphorylation sites in GIT1.
D. J. Webb, M. W. Mayhew, M. Kovalenko, M. J. Schroeder, E. D. Jeffery, L. Whitmore, J. Shabanowitz, D. F. Hunt, and A. F. Horwitz (2006)
J. Cell Sci. 119, 2847-2850
   Full Text »    PDF »
GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover.
S. R. Frank, M. R. Adelstein, and S. H. Hansen (2006)
EMBO J. 25, 1848-1859
   Abstract »    Full Text »    PDF »
The multifunctional GIT family of proteins.
R. J. Hoefen and B. C. Berk (2006)
J. Cell Sci. 119, 1469-1475
   Abstract »    Full Text »    PDF »
Signaling Mechanisms Regulating Endothelial Permeability.
D. Mehta and A. B. Malik (2006)
Physiol Rev 86, 279-367
   Abstract »    Full Text »    PDF »
PAK1 induces podosome formation in A7r5 vascular smooth muscle cells in a PAK-interacting exchange factor-dependent manner.
B. A. Webb, R. Eves, S. W. Crawley, S. Zhou, G. P. Cote, and A. S. Mak (2005)
Am J Physiol Cell Physiol 289, C898-C907
   Abstract »    Full Text »    PDF »
GIT1 Is a Scaffold for ERK1/2 Activation in Focal Adhesions.
G. Yin, Q. Zheng, C. Yan, and B. C. Berk (2005)
J. Biol. Chem. 280, 27705-27712
   Abstract »    Full Text »    PDF »
The Mental Retardation Protein PAK3 Contributes to Synapse Formation and Plasticity in Hippocampus.
B. Boda, S. Alberi, I. Nikonenko, R. Node-Langlois, P. Jourdain, M. Moosmayer, L. Parisi-Jourdain, and D. Muller (2004)
J. Neurosci. 24, 10816-10825
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882