Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 25 (18): 8285-8298

Copyright © 2005 by the American Society for Microbiology. All rights reserved.

PKD2 Functions as an Epidermal Growth Factor-Activated Plasma Membrane Channel{dagger}

Rong Ma,1,{ddagger} Wei-Ping Li,1,§ Dana Rundle,1 Jin Kong,1 Hamid I. Akbarali,2, and Leonidas Tsiokas1*

Department of Cell Biology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 73104,1 Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Boulevard, Oklahoma City, Oklahoma 731042

Received for publication 20 September 2004. Revision received 24 November 2004. Accepted for publication 5 July 2005.

Abstract: PKD2, or polycystin 2, the product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, belongs to the transient receptor potential channel superfamily and has been shown to function as a nonselective cation channel in the plasma membrane. However, the mechanism of PKD2 activation remains elusive. We show that PKD2 overexpression increases epidermal growth factor (EGF)-induced inward currents in LLC-PK1 kidney epithelial cells, while the knockdown of endogenous PKD2 by RNA interference or the expression of a pathogenic missense variant, PKD2-D511V, blunts the EGF-induced response. Pharmacological experiments indicate that the EGF-induced activation of PKD2 occurs independently of store depletion but requires the activity of phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K). Pipette infusion of purified phosphatidylinositol-4,5-bisphosphate (PIP2) suppresses the PKD2-mediated effect on EGF-induced conductance, while pipette infusion of phosphatidylinositol-3,4,5-trisphosphate (PIP3) does not have any effect on this conductance. Overexpression of type I{alpha} phosphatidylinositol-4-phosphate 5-kinase [PIP(5)K{alpha}], which catalyzes the formation of PIP2, suppresses EGF-induced currents. Biochemical experiments show that PKD2 physically interacts with PLC-{gamma}2 and EGF receptor (EGFR) in transfected HEK293T cells and colocalizes with EGFR and PIP2 in the primary cilium of LLC-PK1 cells. We propose that plasma membrane PKD2 is under negative regulation by PIP2. EGF may reduce the threshold of PKD2 activation by mechanical and other stimuli by releasing it from PIP2-mediated inhibition.


* Corresponding author. Mailing address: University of Oklahoma Health Sciences Center, BSEB302E, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104. Phone: (405) 271-8001, ext. 46211. Fax: (405) 271-3758. E-mail: leonidas-tsiokas{at}ouhsc.edu.

{dagger} Supplemental material for this article may be found at http://mcb.asm.org/.

{ddagger} Present address: Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699.

§ Present address: Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China.

Present address: Department of Chemistry, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Cleaved Cytoplasmic Tail of Polycystin-1 Regulates Src-Dependent STAT3 Activation.
J. J. Talbot, X. Song, X. Wang, M. M. Rinschen, N. Doerr, W. B. LaRiviere, B. Schermer, Y. P. Pei, V. E. Torres, and T. Weimbs (2014)
J. Am. Soc. Nephrol.
   Abstract »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Epidermal growth factors in the kidney and relationship to hypertension.
A. Staruschenko, O. Palygin, D. V. Ilatovskaya, and T. S. Pavlov (2013)
Am J Physiol Renal Physiol 305, F12-F20
   Abstract »    Full Text »    PDF »
Protein Kinase G Inhibits Flow-Induced Ca2+ Entry into Collecting Duct Cells.
J. Du, W.-Y. Wong, L. Sun, Y. Huang, and X. Yao (2012)
J. Am. Soc. Nephrol. 23, 1172-1180
   Abstract »    Full Text »    PDF »
Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases.
Y.-H. Choi, A. Suzuki, S. Hajarnis, Z. Ma, H. C. Chapin, M. J. Caplan, M. Pontoglio, S. Somlo, and P. Igarashi (2011)
PNAS 108, 10679-10684
   Abstract »    Full Text »    PDF »
Crystal structure of the intraflagellar transport complex 25/27.
S. Bhogaraju, M. Taschner, M. Morawetz, C. Basquin, and E. Lorentzen (2011)
EMBO J. 30, 1907-1918
   Abstract »    Full Text »    PDF »
Polycystin-1 Surface Localization Is Stimulated by Polycystin-2 and Cleavage at the G Protein-coupled Receptor Proteolytic Site.
H. C. Chapin, V. Rajendran, and M. J. Caplan (2010)
Mol. Biol. Cell 21, 4338-4348
   Abstract »    Full Text »    PDF »
Protein Kinase D-mediated Phosphorylation of Polycystin-2 (TRPP2) Is Essential for Its Effects on Cell Growth and Calcium Channel Activity.
A. J. Streets, A. J. Needham, S. K. Gill, and A. C. M. Ong (2010)
Mol. Biol. Cell 21, 3853-3865
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family.
L.-J. Wu, T.-B. Sweet, and D. E. Clapham (2010)
Pharmacol. Rev. 62, 381-404
   Abstract »    Full Text »    PDF »
Canonical Transient Receptor Potential 6 (TRPC6), a Redox-regulated Cation Channel.
S. Graham, M. Ding, Y. Ding, S. Sours-Brothers, R. Luchowski, Z. Gryczynski, T. Yorio, H. Ma, and R. Ma (2010)
J. Biol. Chem. 285, 23466-23476
   Abstract »    Full Text »    PDF »
Activation of AMP-Activated Protein Kinase Inhibits Oxidized LDL-Triggered Endoplasmic Reticulum Stress In Vivo.
Y. Dong, M. Zhang, S. Wang, B. Liang, Z. Zhao, C. Liu, M. Wu, H. C. Choi, T. J. Lyons, and M. H. Zou (2010)
Diabetes 59, 1386-1396
   Abstract »    Full Text »    PDF »
A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes.
A. Giamarchi, S. Feng, L. Rodat-Despoix, Y. Xu, E. Bubenshchikova, L. J. Newby, J. Hao, C. Gaudioso, M. Crest, A. N. Lupas, et al. (2010)
EMBO J. 29, 1176-1191
   Abstract »    Full Text »    PDF »
A Pathogenic C Terminus-truncated Polycystin-2 Mutant Enhances Receptor-activated Ca2+ Entry via Association with TRPC3 and TRPC7.
K. Miyagi, S. Kiyonaka, K. Yamada, T. Miki, E. Mori, K. Kato, T. Numata, Y. Sawaguchi, T. Numaga, T. Kimura, et al. (2009)
J. Biol. Chem. 284, 34400-34412
   Abstract »    Full Text »    PDF »
Conditional Mutation of Pkd2 Causes Cystogenesis and Upregulates {beta}-Catenin.
I. Kim, T. Ding, Y. Fu, C. Li, L. Cui, A. Li, P. Lian, D. Liang, D. W. Wang, C. Guo, et al. (2009)
J. Am. Soc. Nephrol. 20, 2556-2569
   Abstract »    Full Text »    PDF »
Function and regulation of TRPP2 at the plasma membrane.
L. Tsiokas (2009)
Am J Physiol Renal Physiol 297, F1-F9
   Abstract »    Full Text »    PDF »
Pancreatic Cancer and Precursor Pancreatic Intraepithelial Neoplasia Lesions Are Devoid of Primary Cilia.
E. S. Seeley, C. Carriere, T. Goetze, D. S. Longnecker, and M. Korc (2009)
Cancer Res. 69, 422-430
   Abstract »    Full Text »    PDF »
Transient receptor potential channels meet phosphoinositides.
B. Nilius, G. Owsianik, and T. Voets (2008)
EMBO J. 27, 2809-2816
   Abstract »    Full Text »    PDF »
Identification and Functional Characterization of an N-terminal Oligomerization Domain for Polycystin-2.
S. Feng, G. M. Okenka, C.-X. Bai, A. J. Streets, L. J. Newby, B. T. DeChant, L. Tsiokas, T. Obara, and A. C. M. Ong (2008)
J. Biol. Chem. 283, 28471-28479
   Abstract »    Full Text »    PDF »
Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate.
D. Kim, E. J. Cavanaugh, and D. Simkin (2008)
Am J Physiol Cell Physiol 295, C92-C99
   Abstract »    Full Text »    PDF »
Strategies to Inhibit Cyst Formation in ADPKD.
J. P. Calvet (2008)
Clin. J. Am. Soc. Nephrol. 3, 1205-1211
   Abstract »    Full Text »    PDF »
Activation of TRPP2 through mDia1-dependent voltage gating.
C.-X. Bai, S. Kim, W.-P. Li, A. J. Streets, A. C. M. Ong, and L. Tsiokas (2008)
EMBO J. 27, 1345-1356
   Abstract »    Full Text »    PDF »
Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits.
C.-X. Bai, A. Giamarchi, L. Rodat-Despoix, F. Padilla, T. Downs, L. Tsiokas, and P. Delmas (2008)
EMBO Rep. 9, 472-479
   Abstract »    Full Text »    PDF »
Mediation of angiotensin II-induced Ca2+ signaling by polycystin 2 in glomerular mesangial cells.
J. Du, M. Ding, S. Sours-Brothers, S. Graham, and R. Ma (2008)
Am J Physiol Renal Physiol 294, F909-F918
   Abstract »    Full Text »    PDF »
STAM and Hrs Down-Regulate Ciliary TRP Receptors.
J. Hu, S. G. Wittekind, and M. M. Barr (2007)
Mol. Biol. Cell 18, 3277-3289
   Abstract »    Full Text »    PDF »
TRPpathies.
K. Kiselyov, A. Soyombo, and S. Muallem (2007)
J. Physiol. 578, 641-653
   Abstract »    Full Text »    PDF »
The versatile nature of the calcium-permeable cation channel TRPP2.
A. Giamarchi, F. Padilla, B. Coste, M. Raoux, M. Crest, E. Honore, and P. Delmas (2006)
EMBO Rep. 7, 787-793
   Abstract »    Full Text »    PDF »
Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro.
A. J. Streets, D. J. Moon, M. E. Kane, T. Obara, and A. C.M. Ong (2006)
Hum. Mol. Genet. 15, 1465-1473
   Abstract »    Full Text »    PDF »
Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway.
M. Boca, G. Distefano, F. Qian, A. K. Bhunia, G. G. Germino, and A. Boletta (2006)
J. Am. Soc. Nephrol. 17, 637-647
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882