Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Cell. Biol. 25 (6): 2450-2462

Copyright © 2005 by the American Society for Microbiology. All rights reserved.

Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions

Woo Jae Kim,1,{dagger} Sung Hoon Back,1,{dagger} Vit Kim,1 Incheol Ryu,1, and Sung Key Jang1*

National Research Laboratory, Postech Biotech Center, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea1

Received for publication 26 August 2004. Revision received 14 September 2004. Accepted for publication 24 November 2004.

Abstract: The cellular stress response (SR) is a phylogenetically conserved protection mechanism that involves inhibition of protein synthesis through recruitment of translation factors such as eIF4G into insoluble stress granules (SGs) and blockade of proinflammatory responses by interruption of the signaling pathway from tumor necrosis factor alpha (TNF-{alpha}) to nuclear factor-{kappa}B (NF-{kappa}B) activation. However, the link between these two physiological phenomena has not been clearly elucidated. Here we report that eIF4GI, which is a scaffold protein interacting with many translation factors, interacts with TRAF2, a signaling molecule that plays a key role in activation of NF-{kappa}B through TNF-{alpha}. These two proteins colocalize in SGs during cellular exposure to stress conditions. Moreover, TRAF2 is absent from TNFR1 complexes under stress conditions even after TNF-{alpha} treatment. This suggests that stressed cells lower their biological activities by sequestration of translation factors and TRAF2 into SGs through a protein-protein interaction.

* Corresponding author. Mailing address: NRL, PBC, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyoja-Dong San 31, Pohang, Kyungbuk 790-784, Korea. Phone: 82 54 279 2298. Fax: 82 54 279 8009. E-mail: sungkey{at}

{dagger} W.J.K. and S.H.B. contributed equally to the work.

5-Fluorouracil affects assembly of stress granules based on RNA incorporation.
C. Kaehler, J. Isensee, T. Hucho, H. Lehrach, and S. Krobitsch (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Inactivation of the mTORC1-Eukaryotic Translation Initiation Factor 4E Pathway Alters Stress Granule Formation.
M.-J. Fournier, L. Coudert, S. Mellaoui, P. Adjibade, C. Gareau, M.-F. Cote, N. Sonenberg, R. C. Gaudreault, and R. Mazroui (2013)
Mol. Cell. Biol. 33, 2285-2301
   Abstract »    Full Text »    PDF »
Translation suppression promotes stress granule formation and cell survival in response to cold shock.
S. Hofmann, V. Cherkasova, P. Bankhead, B. Bukau, and G. Stoecklin (2012)
Mol. Biol. Cell 23, 3786-3800
   Abstract »    Full Text »    PDF »
Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules.
K. Fujimura, A. T. Sasaki, and P. Anderson (2012)
Nucleic Acids Res. 40, 8099-8110
   Abstract »    Full Text »    PDF »
Influenza A virus inhibits cytoplasmic stress granule formation.
D. A. Khaperskyy, T. F. Hatchette, and C. McCormick (2012)
FASEB J 26, 1629-1639
   Abstract »    Full Text »    PDF »
DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.
B. Kim, H. J. Cooke, and K. Rhee (2012)
Development 139, 568-578
   Abstract »    Full Text »    PDF »
A Novel Role for hSMG-1 in Stress Granule Formation.
J. A. L. Brown, T. L. Roberts, R. Richards, R. Woods, G. Birrell, Y. C. Lim, S. Ohno, A. Yamashita, R. T. Abraham, N. Gueven, et al. (2011)
Mol. Cell. Biol. 31, 4417-4429
   Abstract »    Full Text »    PDF »
The Epstein-Barr Virus BRRF1 Protein, Na, Induces Lytic Infection in a TRAF2- and p53-Dependent Manner.
S. R. Hagemeier, E. A. Barlow, A. A. Kleman, and S. C. Kenney (2011)
J. Virol. 85, 4318-4329
   Abstract »    Full Text »    PDF »
K. G. Chernov, A. Barbet, L. Hamon, L. P. Ovchinnikov, P. A. Curmi, and D. Pastre (2009)
J. Biol. Chem. 284, 36569-36580
   Abstract »    Full Text »    PDF »
A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation.
K. M. Kim, H. Cho, K. Choi, J. Kim, B.-W. Kim, Y.-G. Ko, S. K. Jang, and Y. K. Kim (2009)
Genes & Dev. 23, 2033-2045
   Abstract »    Full Text »    PDF »
The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response.
R. Sukarieh, N. Sonenberg, and J. Pelletier (2009)
Am J Physiol Cell Physiol 296, C1207-C1217
   Abstract »    Full Text »    PDF »
Mammalian Staufen 1 is recruited to stress granules and impairs their assembly.
M. G. Thomas, L. J. M. Tosar, M. A. Desbats, C. C. Leishman, and G. L. Boccaccio (2009)
J. Cell Sci. 122, 563-573
   Abstract »    Full Text »    PDF »
Proline-Rich Transcript in Brain Protein Induces Stress Granule Formation.
J.-E. Kim, I. Ryu, W. J. Kim, O.-K. Song, J. Ryu, M. Y. Kwon, J. H. Kim, and S. K. Jang (2008)
Mol. Cell. Biol. 28, 803-813
   Abstract »    Full Text »    PDF »
Anti-inflammatory lipid mediator 15d-PGJ2 inhibits translation through inactivation of eIF4A.
W. J. Kim, J. H. Kim, and S. K. Jang (2007)
EMBO J. 26, 5020-5032
   Abstract »    Full Text »    PDF »
Monitoring the Antiviral Effect of Alpha Interferon on Individual Cells.
C. S. Kim, J. H. Jung, T. Wakita, S. K. Yoon, and S. K. Jang (2007)
J. Virol. 81, 8814-8820
   Abstract »    Full Text »    PDF »
The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly.
A. Baguet, S. Degot, N. Cougot, E. Bertrand, M.-P. Chenard, C. Wendling, P. Kessler, H. Le Hir, M.-C. Rio, and C. Tomasetto (2007)
J. Cell Sci. 120, 2774-2784
   Abstract »    Full Text »    PDF »
An RNA-Binding Protein, hnRNP A1, and a Scaffold Protein, Septin 6, Facilitate Hepatitis C Virus Replication.
C. S. Kim, S. K. Seol, O.-K. Song, J. H. Park, and S. K. Jang (2007)
J. Virol. 81, 3852-3865
   Abstract »    Full Text »    PDF »
Distinct Structural Features ofCaprin-1 Mediate Its Interaction with G3BP-1 and Its Induction of Phosphorylation of Eukaryotic Translation Initiation Factor 2{alpha}, Entry to Cytoplasmic Stress Granules, and Selective Interaction with a Subset of mRNAs.
S. Solomon, Y. Xu, B. Wang, M. D. David, P. Schubert, D. Kennedy, and J. W. Schrader (2007)
Mol. Cell. Biol. 27, 2324-2342
   Abstract »    Full Text »    PDF »
Human sat III and Drosophila hsr{omega} transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells.
C. Jolly and S. C. Lakhotia (2006)
Nucleic Acids Res. 34, 5508-5514
   Abstract »    Full Text »    PDF »
Eukaryotic Initiation Factor 2{alpha}-independent Pathway of Stress Granule Induction by the Natural Product Pateamine A.
Y. Dang, N. Kedersha, W.-K. Low, D. Romo, M. Gorospe, R. Kaufman, P. Anderson, and J. O. Liu (2006)
J. Biol. Chem. 281, 32870-32878
   Abstract »    Full Text »    PDF »
RNA granules.
P. Anderson and N. Kedersha (2006)
J. Cell Biol. 172, 803-808
   Abstract »    Full Text »    PDF »
That Which Does Not Kill You Makes You Stronger: A Molecular Mechanism for Preconditioning.
J. E. McDunn and J. P. Cobb (2005)
Sci. STKE 2005, pe34
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882