Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Cell. Biol. 30 (13): 3275-3285

Copyright © 2010 by the American Society for Microbiology. All rights reserved.

A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62{triangledown}

Alexandria Lau,1,{dagger} Xiao-Jun Wang,1,{dagger} Fei Zhao,1 Nicole F. Villeneuve,1 Tongde Wu,1 Tao Jiang,1 Zheng Sun,1 Eileen White,3,4, and Donna D. Zhang1,2*

Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721,1 Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721,2 Cancer Institute of New Jersey, New Brunswick, New Jersey 08903,3 Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 088544

Received for publication 3 March 2010. Accepted for publication 17 April 2010.

Abstract: In response to stress, cells can utilize several cellular processes, such as autophagy, which is a bulk-lysosomal degradation pathway, to mitigate damages and increase the chances of cell survival. Deregulation of autophagy causes upregulation of p62 and the formation of p62-containing aggregates, which are associated with neurodegenerative diseases and cancer. The Nrf2-Keap1 pathway functions as a critical regulator of the cell's defense mechanism against oxidative stress by controlling the expression of many cellular protective proteins. Under basal conditions, Nrf2 is ubiquitinated by the Keap1-Cul3-E3 ubiquitin ligase complex and targeted to the 26S proteasome for degradation. Upon induction, the activity of the E3 ubiquitin ligase is inhibited through the modification of cysteine residues in Keap1, resulting in the stabilization and activation of Nrf2. In this current study, we identified the direct interaction between p62 and Keap1 and the residues required for the interaction have been mapped to 349-DPSTGE-354 in p62 and three arginines in the Kelch domain of Keap1. Accumulation of endogenous p62 or ectopic expression of p62 sequesters Keap1 into aggregates, resulting in the inhibition of Keap1-mediated Nrf2 ubiquitination and its subsequent degradation by the proteasome. In contrast, overexpression of mutated p62, which loses its ability to interact with Keap1, had no effect on Nrf2 stability, demonstrating that p62-mediated Nrf2 upregulation is Keap1 dependent. These findings demonstrate that autophagy deficiency activates the Nrf2 pathway in a noncanonical cysteine-independent mechanism.


* Corresponding author. Mailing address: Department of Pharmacology and Toxicology, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721-0207. Phone: (520) 626-9918. Fax: (520) 626-2466. E-mail: dzhang{at}pharmacy.arizona.edu

{triangledown} Published ahead of print on 26 April 2010.

{dagger} Both authors contributed equally.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Impact of miRNA-Based Molecular Diagnostics and Treatment of NRF2-Stabilized Tumors.
S. Yamamoto, J. Inoue, T. Kawano, K.-i. Kozaki, K. Omura, and J. Inazawa (2014)
Mol. Cancer Res. 12, 58-68
   Abstract »    Full Text »    PDF »
Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of BrafV600E-Driven Lung Tumors.
A. M. Strohecker, J. Y. Guo, G. Karsli-Uzunbas, S. M. Price, G. J. Chen, R. Mathew, M. McMahon, and E. White (2013)
Cancer Discovery 3, 1272-1285
   Abstract »    Full Text »    PDF »
The emerging role of the Nrf2-Keap1 signaling pathway in cancer.
M. C. Jaramillo and D. D. Zhang (2013)
Genes & Dev. 27, 2179-2191
   Abstract »    Full Text »    PDF »
KEAP1 Is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer Cells.
Y. Xu, F. Fang, S. Miriyala, P. A. Crooks, T. D. Oberley, L. Chaiswing, T. Noel, A. K. Holley, Y. Zhao, K. K. Kiningham, et al. (2013)
Cancer Res. 73, 4406-4417
   Abstract »    Full Text »    PDF »
Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner.
A. Lau, Y. Zheng, S. Tao, H. Wang, S. A. Whitman, E. White, and D. D. Zhang (2013)
Mol. Cell. Biol. 33, 2436-2446
   Abstract »    Full Text »    PDF »
Role of p62/SQSTM1 in liver physiology and pathogenesis.
S. Manley, J. A. Williams, and W.-X. Ding (2013)
Experimental Biology and Medicine 238, 525-538
   Abstract »    Full Text »    PDF »
The transcription factor NF-E2-related Factor 2 (Nrf2): a protooncogene?.
P. Shelton and A. K. Jaiswal (2013)
FASEB J 27, 414-423
   Abstract »    Full Text »    PDF »
Molecular Basis of Electrophilic and Oxidative Defense: Promises and Perils of Nrf2.
Q. Ma and X. He (2012)
Pharmacol. Rev. 64, 1055-1081
   Abstract »    Full Text »    PDF »
Liver autophagy: physiology and pathology.
M. Komatsu (2012)
J. Biochem. 152, 5-15
   Abstract »    Full Text »    PDF »
Proteasome functional insufficiency in cardiac pathogenesis.
X. Wang, J. Li, H. Zheng, H. Su, and S. R. Powell (2011)
Am J Physiol Heart Circ Physiol 301, H2207-H2219
   Abstract »    Full Text »    PDF »
Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy.
H. Zheng, S. A. Whitman, W. Wu, G. T. Wondrak, P. K. Wong, D. Fang, and D. D. Zhang (2011)
Diabetes 60, 3055-3066
   Abstract »    Full Text »    PDF »
The dynamic nature of autophagy in cancer.
A. C. Kimmelman (2011)
Genes & Dev. 25, 1999-2010
   Abstract »    Full Text »    PDF »
Role of Autophagy in Cancer Prevention.
H.-Y. Chen and E. White (2011)
Cancer Prevention Research 4, 973-983
   Abstract »    Full Text »    PDF »
Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.
Y. Inami, S. Waguri, A. Sakamoto, T. Kouno, K. Nakada, O. Hino, S. Watanabe, J. Ando, M. Iwadate, M. Yamamoto, et al. (2011)
J. Cell Biol. 193, 275-284
   Abstract »    Full Text »    PDF »
Autophagy-deficient mice develop multiple liver tumors.
A. Takamura, M. Komatsu, T. Hara, A. Sakamoto, C. Kishi, S. Waguri, Y. Eishi, O. Hino, K. Tanaka, and N. Mizushima (2011)
Genes & Dev. 25, 795-800
   Abstract »    Full Text »    PDF »
Chemopreventative Potential of the Cruciferous Vegetable Constituent Phenethyl Isothiocyanate in a Mouse Model of Prostate Cancer.
A. A. Powolny, A. Bommareddy, E.-R. Hahm, D. P. Normolle, J. H. Beumer, J. B. Nelson, and S. V. Singh (2011)
J Natl Cancer Inst 103, 571-584
   Abstract »    Full Text »    PDF »
Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation.
K.-i. Fujita, D. Maeda, Q. Xiao, and S. M. Srinivasula (2011)
PNAS 108, 1427-1432
   Abstract »    Full Text »    PDF »
Autophagy in Protein and Organelle Turnover.
N. Mizushima (2011)
Cold Spring Harb Symp Quant Biol 76, 397-402
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882