Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Mol. Biol. Cell 14 (7): 2921-2934

Copyright © 2003 by The American Society for Cell Biology.

p250GAP, a Novel Brain-enriched GTPase-activating Protein for Rho Family GTPases, Is Involved in the N-Methyl-D-aspartate Receptor Signaling

Takanobu Nakazawa *, Ayako M. Watabe {dagger}, Tohru Tezuka *, Yutaka Yoshida *, Kazumasa Yokoyama *, Hisashi Umemori *, Akihiro Inoue {ddagger}, Shigeo Okabe {ddagger}, Toshiya Manabe {dagger} §, and Tadashi Yamamoto * ||

* Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
{dagger} Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
{ddagger} Department of Anatomy and Cell Biology, School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan § Division of Cell Biology and Neurophysiology, Department of Neuroscience, Faculty of Medicine, Kobe University, Kobe 650-0017, Japan

Received for publication September 30, 2002. Revision received March 9, 2003. Accepted for publication March 9, 2003.

Monitoring Editor: Tony Hunter

Abstract: N-Methyl-D-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluR{epsilon}2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluR{epsilon}2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.

Abbreviations used: BAP, bacterial alkaline phosphatase; GAP, GTPase activating protein; GEF, guanine nucleotide exchange factor; GDI, guanine nucleotide dissociation inhibitor; GluR, glutamate receptor; CRIB, Cdc42/Rac-interactive binding domain GST, glutathione S-transferase mAb, monoclonal antibody NMDA, N-methyl-D-aspartate PSD, postsynaptic density RBD, Rho-binding domain SH3, src homology 3.

|| Corresponding author. E-mail address: tyamamot{at}

The Environmental Neurotoxicant PCB 95 Promotes Synaptogenesis via Ryanodine Receptor-Dependent miR132 Upregulation.
A. Lesiak, M. Zhu, H. Chen, S. M. Appleyard, S. Impey, P. J. Lein, and G. A. Wayman (2014)
J. Neurosci. 34, 717-725
   Abstract »    Full Text »    PDF »
Myo9b and RICS Modulate Dendritic Morphology of Cortical Neurons.
H. Long, X. Zhu, P. Yang, Q. Gao, Y. Chen, and L. Ma (2013)
Cereb Cortex 23, 71-79
   Abstract »    Full Text »    PDF »
miR-212/132 expression and functions: within and beyond the neuronal compartment.
A. Wanet, A. Tacheny, T. Arnould, and P. Renard (2012)
Nucleic Acids Res. 40, 4742-4753
   Abstract »    Full Text »    PDF »
A Stretch of Polybasic Residues Mediates Cdc42 GTPase-activating Protein (CdGAP) Binding to Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Its GAP Activity.
F. Karimzadeh, M. Primeau, D. Mountassif, I. Rouiller, and N. Lamarche-Vane (2012)
J. Biol. Chem. 287, 19610-19621
   Abstract »    Full Text »    PDF »
SH3 Domain-Based Phototrapping in Living Cells Reveals Rho Family GAP Signaling Complexes.
H. Okada, A. Uezu, F. M. Mason, E. J. Soderblom, M. A. Moseley III, and S. H. Soderling (2011)
Science Signaling 4, rs13
   Abstract »    Full Text »    PDF »
An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP.
G. A. Wayman, M. Davare, H. Ando, D. Fortin, O. Varlamova, H.-Y. M. Cheng, D. Marks, K. Obrietan, T. R. Soderling, R. H. Goodman, et al. (2008)
PNAS 105, 9093-9098
   Abstract »    Full Text »    PDF »
PX-RICS mediates ER-to-Golgi transport of the N-cadherin/{beta}-catenin complex.
T. Nakamura, T. Hayashi, Y. Nasu-Nishimura, F. Sakaue, Y. Morishita, T. Okabe, S. Ohwada, K. Matsuura, and T. Akiyama (2008)
Genes & Dev. 22, 1244-1256
   Abstract »    Full Text »    PDF »
Depletion of Mammalian CCR4b Deadenylase Triggers Elevation of the p27Kip1 mRNA Level and Impairs Cell Growth.
M. Morita, T. Suzuki, T. Nakamura, K. Yokoyama, T. Miyasaka, and T. Yamamoto (2007)
Mol. Cell. Biol. 27, 4980-4990
   Abstract »    Full Text »    PDF »
Synaptic Scaffolding Molecule {alpha} Is a Scaffold To Mediate N-Methyl-D-Aspartate Receptor-Dependent RhoA Activation in Dendrites.
J. Iida, H. Ishizaki, M. Okamoto-Tanaka, A. Kawata, K. Sumita, S. Ohgake, Y. Sato, H. Yorifuji, N. Nukina, K. Ohashi, et al. (2007)
Mol. Cell. Biol. 27, 4388-4405
   Abstract »    Full Text »    PDF »
p200 RhoGAP Promotes Cell Proliferation by Mediating Cross-talk between Ras and Rho Signaling Pathways.
X. Shang, S. Y. Moon, and Y. Zheng (2007)
J. Biol. Chem. 282, 8801-8811
   Abstract »    Full Text »    PDF »
Vasoactive Intestinal Peptide and PACAP38 Control N-Methyl-D-aspartic Acid-induced Dendrite Motility by Modifying the Activities of Rho GTPases and Phosphatidylinositol 3-Kinases.
F. Henle, C. Fischer, D. K. Meyer, and J. Leemhuis (2006)
J. Biol. Chem. 281, 24955-24969
   Abstract »    Full Text »    PDF »
Physical and Functional Interaction of Fyn Tyrosine Kinase with a Brain-enriched Rho GTPase-activating Protein TCGAP.
H. Liu, T. Nakazawa, T. Tezuka, and T. Yamamoto (2006)
J. Biol. Chem. 281, 23611-23619
   Abstract »    Full Text »    PDF »
NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity.
T. Nakazawa, S. Komai, A. M. Watabe, Y. Kiyama, M. Fukaya, F. Arima-Yoshida, R. Horai, K. Sudo, K. Ebine, M. Delawary, et al. (2006)
EMBO J. 25, 2867-2877
   Abstract »    Full Text »    PDF »
From The Cover: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis.
N. Vo, M. E. Klein, O. Varlamova, D. M. Keller, T. Yamamoto, R. H. Goodman, and S. Impey (2005)
PNAS 102, 16426-16431
   Abstract »    Full Text »    PDF »
Inhibition of Rho-Kinase in the Nucleus Tractus Solitarius Enhances Glutamate Sensitivity in Rats.
K. Ito, Y. Hirooka, N. Hori, Y. Kimura, Y. Sagara, H. Shimokawa, A. Takeshita, and K. Sunagawa (2005)
Hypertension 46, 360-365
   Abstract »    Full Text »    PDF »
Hippocampal Synaptic Modulation by the Phosphotyrosine Adapter Protein ShcC/N-Shc via Interaction with the NMDA Receptor.
Y. Miyamoto, L. Chen, M. Sato, M. Sokabe, T. Nabeshima, T. Pawson, R. Sakai, and N. Mori (2005)
J. Neurosci. 25, 1826-1835
   Abstract »    Full Text »    PDF »
Inhibition of Rho-Kinase in the Brainstem Augments Baroreflex Control of Heart Rate in Rats.
K. Ito, Y. Hirooka, Y. Sagara, Y. Kimura, K. Kaibuchi, H. Shimokawa, A. Takeshita, and K. Sunagawa (2004)
Hypertension 44, 478-483
   Abstract »    Full Text »    PDF »
Rho/Rho-Kinase Pathway in the Brainstem Contributes to Hypertension Caused by Chronic Nitric Oxide Synthase Inhibition.
K. Ito, Y. Hirooka, T. Kishi, Y. Kimura, K. Kaibuchi, H. Shimokawa, and A. Takeshita (2004)
Hypertension 43, 156-162
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882