Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Mol. Biol. Cell 16 (5): 2414-2423

Copyright © 2005 by The American Society for Cell Biology.

Initiation of Embryonic Cardiac Pacemaker Activity by Inositol 1,4,5-Trisphosphate–dependent Calcium Signaling

{boxd}


{boxv}

Annabelle Méry *, Franck Aimond *, Claudine Ménard *, Katsuhiko Mikoshiba {dagger}, Marek Michalak {ddagger}, and Michel Pucéat *

* CRBM, Centre National de la Recherche Scientifique FRE2593, 34293 Montpellier, France
{dagger} RIKEN BSI, Saitama, IMSUT, University of Tokyo, Tokyo 108-8639, Japan {ddagger} Canadian Institutes for Health Research Membrane Protein Research Group and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Received for publication October 8, 2004. Revision received February 28, 2005. Accepted for publication March 1, 2005.

Monitoring Editor: Guido Guidotti

Abstract: In the adult, the heart rate is driven by spontaneous and repetitive depolarizations of pacemaker cells to generate a firing of action potentials propagating along the conduction system and spreading into the ventricles. In the early embryo before E9.5, the pacemaker ionic channel responsible for the spontaneous depolarization of cells is not yet functional. Thus the mechanisms that initiate early heart rhythm during cardiogenesis are puzzling. In the absence of a functional pacemaker ionic channel, the oscillatory nature of inositol 1,4,5-trisphosphate (InsP3)-induced intracellular Ca2+ signaling could provide an alternative pacemaking mechanism. To test this hypothesis, we have engineered pacemaker cells from embryonic stem (ES) cells, a model that faithfully recapitulates early stages of heart development. We show that InsP3-dependent shuttle of free Ca2+ in and out of the endoplasmic reticulum is essential for a proper generation of pacemaker activity during early cardiogenesis and fetal life.


This article was published online ahead of print in MBC in Press (http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E04-10-0883) on March 9, 2005.


{boxd}


{boxv}

The online version of this article contains supplemental material at MBC Online (http://www.molbiolcell.org).

Address correspondence to: M. Pucéat (michel.puceat{at}crbm.cnrs.fr).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.
T. Beiert, T. Bruegmann, and P. Sasse (2014)
Cardiovasc Res
   Abstract »    Full Text »    PDF »
SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells.
D. Weisbrod, A. Peretz, A. Ziskind, N. Menaker, S. Oz, L. Barad, S. Eliyahu, J. Itskovitz-Eldor, N. Dascal, D. Khananshvili, et al. (2013)
PNAS 110, E1685-E1694
   Abstract »    Full Text »    PDF »
Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: Insights from bifurcation analysis of mathematical models.
Y. Kurata, I. Hisatome, and T. Shibamoto (2012)
Am J Physiol Heart Circ Physiol 302, H2285-H2300
   Abstract »    Full Text »    PDF »
A key role of TRPC channels in the regulation of electromechanical activity of the developing heart.
J. Sabourin, E. Robin, and E. Raddatz (2011)
Cardiovasc Res 92, 226-236
   Abstract »    Full Text »    PDF »
Distribution and Functional Role of Inositol 1,4,5-trisphosphate Receptors in Mouse Sinoatrial Node.
Y.-K. Ju, J. Liu, B. H. Lee, D. Lai, E. A. Woodcock, M. Lei, M. B. Cannell, and D. G. Allen (2011)
Circ. Res. 109, 848-857
   Abstract »    Full Text »    PDF »
Developmental aspects of cardiac Ca2+ signaling: interplay between RyR- and IP3R-gated Ca2+ stores.
E. Janowski, M. Berrios, L. Cleemann, and M. Morad (2010)
Am J Physiol Heart Circ Physiol 298, H1939-H1950
   Abstract »    Full Text »    PDF »
A Coupled SYSTEM of Intracellular Ca2+ Clocks and Surface Membrane Voltage Clocks Controls the Timekeeping Mechanism of the Heart's Pacemaker.
E. G. Lakatta, V. A. Maltsev, and T. M. Vinogradova (2010)
Circ. Res. 106, 659-673
   Abstract »    Full Text »    PDF »
Hyperpolarization-Activated Cation Channels: From Genes to Function.
M. Biel, C. Wahl-Schott, S. Michalakis, and X. Zong (2009)
Physiol Rev 89, 847-885
   Abstract »    Full Text »    PDF »
Excitation-Contraction Coupling of the Mouse Embryonic Cardiomyocyte.
R. Rapila, T. Korhonen, and P. Tavi (2008)
J. Gen. Physiol. 132, 397-405
   Abstract »    Full Text »    PDF »
Mathematical Model of Mouse Embryonic Cardiomyocyte Excitation-Contraction Coupling.
T. Korhonen, R. Rapila, and P. Tavi (2008)
J. Gen. Physiol. 132, 407-419
   Abstract »    Full Text »    PDF »
Genesis and Regulation of the Heart Automaticity.
M. E. Mangoni and J. Nargeot (2008)
Physiol Rev 88, 919-982
   Abstract »    Full Text »    PDF »
Hyperpolarization-activated cyclic nucleotide-modulated 'HCN' channels confer regular and faster rhythmicity to beating mouse embryonic stem cells.
Y. Qu, G. M. Whitaker, L. Hove-Madsen, G. F. Tibbits, and E. A. Accili (2008)
J. Physiol. 586, 701-716
   Abstract »    Full Text »    PDF »
Why, where, and when do cardiac myocytes express inositol 1,4,5-trisphosphate receptors?.
M. D. Bootman and H. L. Roderick (2008)
Am J Physiol Heart Circ Physiol 294, H579-H581
   Full Text »    PDF »
Fgl2 deficiency causes neonatal death and cardiac dysfunction during embryonic and postnatal development in mice.
J. Mu, D. Qu, A. Bartczak, M. J. Phillips, J. Manuel, W. He, C. Koscik, M. Mendicino, L. Zhang, D. A. Clark, et al. (2007)
Physiol Genomics 31, 53-62
   Abstract »    Full Text »    PDF »
Intracellular Ca2+ Oscillations, a Potential Pacemaking Mechanism in Early Embryonic Heart Cells.
P. Sasse, J. Zhang, L. Cleemann, M. Morad, J. Hescheler, and B. K. Fleischmann (2007)
J. Gen. Physiol. 130, 133-144
   Abstract »    Full Text »    PDF »
Pacemaking, arrhythmias, inotropy and hypertrophy: the many possible facets of IP3 signalling in cardiac myocytes.
H. L. Roderick and M. D. Bootman (2007)
J. Physiol. 581, 883-884
   Full Text »    PDF »
Inositol-1,4,5-trisphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes.
N. Kapur and K. Banach (2007)
J. Physiol. 581, 1113-1127
   Abstract »    Full Text »    PDF »
Store-Operated Ca2+ Influx and Expression of TRPC Genes in Mouse Sinoatrial Node.
Y.-K. Ju, Y. Chu, H. Chaulet, D. Lai, O. L. Gervasio, R. M. Graham, M. B. Cannell, and D. G. Allen (2007)
Circ. Res. 100, 1605-1614
   Abstract »    Full Text »    PDF »
Catecholamines and development of cardiac pacemaking: An intrinsically intimate relationship.
S. N. Ebert and D. G. Taylor (2006)
Cardiovasc Res 72, 364-374
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882