Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PLANT CELL 12 (12): 2351-2366

Copyright © 2000 by the American Society of Plant Physiologists.

Plant Cell, Vol. 12, 2351-2366, December 2000, Copyright © 2000, American Society of Plant Physiologists A Mutation in the Arabidopsis HYL1 Gene Encoding a dsRNA Binding Protein Affects Responses to Abscisic Acid, Auxin, and Cytokinin Cheng Lua and Nina Fedoroffa a Biology Department and Biotechnology Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 Nina Fedoroff, nvfl{at} (E-mail), 814-863-1357 (fax)

Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419–amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein–protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana.
K. D. Raczynska, A. Stepien, D. Kierzkowski, M. Kalak, M. Bajczyk, J. McNicol, C. G. Simpson, Z. Szweykowska-Kulinska, J. W. S. Brown, and A. Jarmolowski (2014)
Nucleic Acids Res. 42, 1224-1244
   Abstract »    Full Text »    PDF »
Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.
G. T. Duarte, C. C. Matiolli, B. D. Pant, A. Schlereth, W.-R. Scheible, M. Stitt, R. Vicentini, and M. Vincentz (2013)
J. Exp. Bot. 64, 4301-4312
   Abstract »    Full Text »    PDF »
CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts.
S. Zhang, M. Xie, G. Ren, and B. Yu (2013)
PNAS 110, 17588-17593
   Abstract »    Full Text »    PDF »
Complementation of Hyponastic Leaves1 by Double-Strand RNA-Binding Domains of Dicer-Like1 in Nuclear Dicing Bodies.
Q. Liu, Q. Yan, Y. Liu, F. Hong, Z. Sun, L. Shi, Y. Huang, and Y. Fang (2013)
Plant Physiology 163, 108-117
   Abstract »    Full Text »    PDF »
HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis.
H. Lian, X. Li, Z. Liu, and Y. He (2013)
J. Exp. Bot. 64, 3397-3410
   Abstract »    Full Text »    PDF »
Emerging roles of microRNAs in the mediation of drought stress response in plants.
Y. Ding, Y. Tao, and C. Zhu (2013)
J. Exp. Bot. 64, 3077-3086
   Abstract »    Full Text »    PDF »
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action.
P. Wang, L. Xue, G. Batelli, S. Lee, Y.-J. Hou, M. J. Van Oosten, H. Zhang, W. A. Tao, and J.-K. Zhu (2013)
PNAS 110, 11205-11210
   Abstract »    Full Text »    PDF »
STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis.
S. Ben Chaabane, R. Liu, V. Chinnusamy, Y. Kwon, J.-h. Park, S. Y. Kim, J.-K. Zhu, S. W. Yang, and B.-h. Lee (2013)
Nucleic Acids Res. 41, 1984-1997
   Abstract »    Full Text »    PDF »
NOT2 Proteins Promote Polymerase II-Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in Arabidopsis.
L. Wang, X. Song, L. Gu, X. Li, S. Cao, C. Chu, X. Cui, X. Chen, and X. Cao (2013)
PLANT CELL 25, 715-727
   Abstract »    Full Text »    PDF »
Processing of plant microRNA precursors.
N. G. Bologna, A. L. Schapire, and J. F. Palatnik (2013)
Briefings in Functional Genomics 12, 37-45
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis.
X. Zhan, B. Wang, H. Li, R. Liu, R. K. Kalia, J.-K. Zhu, and V. Chinnusamy (2012)
PNAS 109, 18198-18203
   Abstract »    Full Text »    PDF »
IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress.
N. Kinoshita, H. Wang, H. Kasahara, J. Liu, C. MacPherson, Y. Machida, Y. Kamiya, M. A. Hannah, and N.-H. Chua (2012)
PLANT CELL 24, 3590-3602
   Abstract »    Full Text »    PDF »
Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis.
G. Ren, M. Xie, Y. Dou, S. Zhang, C. Zhang, and B. Yu (2012)
PNAS 109, 12817-12821
   Abstract »    Full Text »    PDF »
The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal-Distal, Venation and Stomatal Patterning in Arabidopsis.
S. Jover-Gil, H. Candela, P. Robles, V. Aguilera, J. M. Barrero, J. L. Micol, and M. R. Ponce (2012)
Plant Cell Physiol. 53, 1322-1333
   Abstract »    Full Text »    PDF »
Gene Silencing in Arabidopsis Spreads from the Root to the Shoot, through a Gating Barrier, by Template-Dependent, Nonvascular, Cell-to-Cell Movement.
D. Liang, R. G. White, and P. M. Waterhouse (2012)
Plant Physiology 159, 984-1000
   Abstract »    Full Text »    PDF »
The Helicase and RNaseIIIa Domains of Arabidopsis Dicer-Like1 Modulate Catalytic Parameters during MicroRNA Biogenesis.
C. Liu, M. J. Axtell, and N. V. Fedoroff (2012)
Plant Physiology 159, 748-758
   Abstract »    Full Text »    PDF »
HYL1 controls the miR156-mediated juvenile phase of vegetative growth.
S. Li, X. Yang, F. Wu, and Y. He (2012)
J. Exp. Bot. 63, 2787-2798
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses.
W. Li, X. Cui, Z. Meng, X. Huang, Q. Xie, H. Wu, H. Jin, D. Zhang, and W. Liang (2012)
Plant Physiology 158, 1279-1292
   Abstract »    Full Text »    PDF »
Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage.
D.-H. Jeong, S. Park, J. Zhai, S. G. R. Gurazada, E. De Paoli, B. C. Meyers, and P. J. Green (2011)
PLANT CELL 23, 4185-4207
   Abstract »    Full Text »    PDF »
An Importin {beta} Protein Negatively Regulates MicroRNA Activity in Arabidopsis.
W. Wang, R. Ye, Y. Xin, X. Fang, C. Li, H. Shi, X. Zhou, and Y. Qi (2011)
PLANT CELL 23, 3565-3576
   Abstract »    Full Text »    PDF »
The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals.
C. C. Matiolli, J. P. Tomaz, G. T. Duarte, F. M. Prado, L. E. V. Del Bem, A. B. Silveira, L. Gauer, L. G. G. Correa, R. D. Drumond, A. J. C. Viana, et al. (2011)
Plant Physiology 157, 692-705
   Abstract »    Full Text »    PDF »
HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways.
Z. Liu, L. Jia, H. Wang, and Y. He (2011)
J. Exp. Bot. 62, 4367-4381
   Abstract »    Full Text »    PDF »
Abscisic Acid Signal off the STARTing Block.
A. Joshi-Saha, C. Valon, and J. Leung (2011)
Mol Plant
   Abstract »    Full Text »    PDF »
The role of epigenetic processes in controlling flowering time in plants exposed to stress.
M. W. Yaish, J. Colasanti, and S. J. Rothstein (2011)
J. Exp. Bot. 62, 3727-3735
   Abstract »    Full Text »    PDF »
MicroRNAs Regulate the Timing of Embryo Maturation in Arabidopsis.
M. R. Willmann, A. J. Mehalick, R. L. Packer, and P. D. Jenik (2011)
Plant Physiology 155, 1871-1884
   Abstract »    Full Text »    PDF »
MicroRNA Gene Regulation Cascades During Early Stages of Plant Development.
H. Nonogaki (2010)
Plant Cell Physiol. 51, 1840-1846
   Abstract »    Full Text »    PDF »
Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1.
C. Furumizu, H. Tsukaya, and Y. Komeda (2010)
RNA 16, 1809-1817
   Abstract »    Full Text »    PDF »
An endogenous, systemic RNAi pathway in plants.
P. Dunoyer, C. A. Brosnan, G. Schott, Y. Wang, F. Jay, A. Alioua, C. Himber, and O. Voinnet (2010)
EMBO J. 29, 1699-1712
   Abstract »    Full Text »    PDF »
MicroRNAs in the Rhizobia Legume Symbiosis.
S. A. Simon, B. C. Meyers, and D. J. Sherrier (2009)
Plant Physiology 151, 1002-1008
   Full Text »    PDF »
BT2, a BTB Protein, Mediates Multiple Responses to Nutrients, Stresses, and Hormones in Arabidopsis.
K. K. Mandadi, A. Misra, S. Ren, and T. D. McKnight (2009)
Plant Physiology 150, 1930-1939
   Abstract »    Full Text »    PDF »
Anatomical and Transcriptomic Studies of the Coleorhiza Reveal the Importance of This Tissue in Regulating Dormancy in Barley.
J. M. Barrero, M. J. Talbot, R. G. White, J. V. Jacobsen, and F. Gubler (2009)
Plant Physiology 150, 1006-1021
   Abstract »    Full Text »    PDF »
Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs.
B. Szarzynska, L. Sobkowiak, B. D. Pant, S. Balazadeh, W.-R. Scheible, B. Mueller-Roeber, A. Jarmolowski, and Z. Szweykowska-Kulinska (2009)
Nucleic Acids Res. 37, 3083-3093
   Abstract »    Full Text »    PDF »
A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA.
Y. Tagami, H. Motose, and Y. Watanabe (2009)
RNA 15, 450-458
   Abstract »    Full Text »    PDF »
SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development.
G.-H. Zhang, Q. Xu, X.-D. Zhu, Q. Qian, and H.-W. Xue (2009)
PLANT CELL 21, 719-735
   Abstract »    Full Text »    PDF »
Two Cap-Binding Proteins CBP20 and CBP80 are Involved in Processing Primary MicroRNAs.
S. Kim, J.-Y. Yang, J. Xu, I.-C. Jang, M. J. Prigge, and N.-H. Chua (2008)
Plant Cell Physiol. 49, 1634-1644
   Abstract »    Full Text »    PDF »
Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array.
A. Matsui, J. Ishida, T. Morosawa, Y. Mochizuki, E. Kaminuma, T. A. Endo, M. Okamoto, E. Nambara, M. Nakajima, M. Kawashima, et al. (2008)
Plant Cell Physiol. 49, 1135-1149
   Abstract »    Full Text »    PDF »
The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis.
B. Yu, L. Bi, B. Zheng, L. Ji, D. Chevalier, M. Agarwal, V. Ramachandran, W. Li, T. Lagrange, J. C. Walker, et al. (2008)
PNAS 105, 10073-10078
   Abstract »    Full Text »    PDF »
Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.
R. G. Kulka (2008)
J. Exp. Bot. 59, 2361-2370
   Abstract »    Full Text »    PDF »
RNA Silencing in Plants: Yesterday, Today, and Tomorrow.
A. Eamens, M.-B. Wang, N. A. Smith, and P. M. Waterhouse (2008)
Plant Physiology 147, 456-468
   Full Text »    PDF »
Arabidopsis Ribosomal Proteins RPL23aA and RPL23aB Are Differentially Targeted to the Nucleolus and Are Disparately Required for Normal Development.
R. F. Degenhardt and P. C. Bonham-Smith (2008)
Plant Physiology 147, 128-142
   Abstract »    Full Text »    PDF »
Phytohormone abscisic acid control RNA-dependent RNA polymerase 6 gene expression and post-transcriptional gene silencing in rice cells.
J. H. Yang, H. H. Seo, S. J. Han, E. K. Yoon, M. S. Yang, and W. S. Lee (2008)
Nucleic Acids Res. 36, 1220-1226
   Abstract »    Full Text »    PDF »
An Update on Abscisic Acid Signaling in Plants and More ....
A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, F. Jammes, C. Valon, N. F. d. Frey, and J. Leung (2008)
Mol Plant 1, 198-217
   Abstract »    Full Text »    PDF »
STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, Two DEAD-Box RNA Helicases That Attenuate Arabidopsis Responses to Multiple Abiotic Stresses.
P. Kant, S. Kant, M. Gordon, R. Shaked, and S. Barak (2007)
Plant Physiology 145, 814-830
   Abstract »    Full Text »    PDF »
Location of a Possible miRNA Processing Site in SmD3/SmB Nuclear Bodies in Arabidopsis.
Y. Fujioka, M. Utsumi, Y. Ohba, and Y. Watanabe (2007)
Plant Cell Physiol. 48, 1243-1253
   Abstract »    Full Text »    PDF »
Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body.
L. Song, M.-H. Han, J. Lesicka, and N. Fedoroff (2007)
PNAS 104, 5437-5442
   Abstract »    Full Text »    PDF »
The N-Terminal Double-Stranded RNA Binding Domains of Arabidopsis HYPONASTIC LEAVES1 Are Sufficient for Pre-MicroRNA Processing.
F. Wu, L. Yu, W. Cao, Y. Mao, Z. Liu, and Y. He (2007)
PLANT CELL 19, 914-925
   Abstract »    Full Text »    PDF »
Histone Deacetylases and ASYMMETRIC LEAVES2 Are Involved in the Establishment of Polarity in Leaves of Arabidopsis.
Y. Ueno, T. Ishikawa, K. Watanabe, S. Terakura, H. Iwakawa, K. Okada, C. Machida, and Y. Machida (2007)
PLANT CELL 19, 445-457
   Abstract »    Full Text »    PDF »
The blossoming of RNA biology: Novel insights from plant systems.
J. Bove, C. L.H. Hord, and M. A. Mullen (2006)
RNA 12, 2035-2046
   Full Text »    PDF »
A Family of MicroRNAs Present in Plants and Animals.
M. Arteaga-Vazquez, J. Caballero-Perez, and J.-P. Vielle-Calzada (2006)
PLANT CELL 18, 3355-3369
   Abstract »    Full Text »    PDF »
EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis.
T. Kariola, G. Brader, E. Helenius, J. Li, P. Heino, and E. T. Palva (2006)
Plant Physiology 142, 1559-1573
   Abstract »    Full Text »    PDF »
The Exoribonuclease XRN4 Is a Component of the Ethylene Response Pathway in Arabidopsis.
T. Potuschak, A. Vansiri, B. M. Binder, E. Lechner, R. D. Vierstra, and P. Genschik (2006)
PLANT CELL 18, 3047-3057
   Abstract »    Full Text »    PDF »
The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity.
A. Rosado, A. L. Schapire, R. A. Bressan, A. L. Harfouche, P. M. Hasegawa, V. Valpuesta, and M. A. Botella (2006)
Plant Physiology 142, 1113-1126
   Abstract »    Full Text »    PDF »
SERRATE: a new player on the plant microRNA scene.
D. Lobbes, G. Rallapalli, D. D. Schmidt, C. Martin, and J. Clarke (2006)
EMBO Rep. 7, 1052-1058
   Abstract »    Full Text »    PDF »
Mutations in ABO1/ELO2, a Subunit of Holo-Elongator, Increase Abscisic Acid Sensitivity and Drought Tolerance in Arabidopsis thaliana.
Z. Chen, H. Zhang, D. Jablonowski, X. Zhou, X. Ren, X. Hong, R. Schaffrath, J.-K. Zhu, and Z. Gong (2006)
Mol. Cell. Biol. 26, 6902-6912
   Abstract »    Full Text »    PDF »
Genetic Interaction between the AS1-AS2 and RDR6-SGS3-AGO7 Pathways for Leaf Morphogenesis.
L. Xu, L. Yang, L. Pi, Q. Liu, Q. Ling, H. Wang, R. S. Poethig, and H. Huang (2006)
Plant Cell Physiol. 47, 853-863
   Abstract »    Full Text »    PDF »
STABILIZED1, a Stress-Upregulated Nuclear Protein, Is Required for Pre-mRNA Splicing, mRNA Turnover, and Stress Tolerance in Arabidopsis.
B.-h. Lee, A. Kapoor, J. Zhu, and J.-K. Zhu (2006)
PLANT CELL 18, 1736-1749
   Abstract »    Full Text »    PDF »
Post-transcriptional small RNA pathways in plants: mechanisms and regulations..
H. Vaucheret (2006)
Genes & Dev. 20, 759-771
   Abstract »    Full Text »    PDF »
ABA-Hypersensitive Germination3 Encodes a Protein Phosphatase 2C (AtPP2CA) That Strongly Regulates Abscisic Acid Signaling during Germination among Arabidopsis Protein Phosphatase 2Cs.
T. Yoshida, N. Nishimura, N. Kitahata, T. Kuromori, T. Ito, T. Asami, K. Shinozaki, and T. Hirayama (2006)
Plant Physiology 140, 115-126
   Abstract »    Full Text »    PDF »
The Protein Phosphatase AtPP2CA Negatively Regulates Abscisic Acid Signal Transduction in Arabidopsis, and Effects of abh1 on AtPP2CA mRNA.
J. M. Kuhn, A. Boisson-Dernier, M. B. Dizon, M. H. Maktabi, and J. I. Schroeder (2006)
Plant Physiology 140, 127-139
   Abstract »    Full Text »    PDF »
Ectopic DICER-LIKE1 Expression in P1/HC-Pro Arabidopsis Rescues Phenotypic Anomalies but Not Defects in MicroRNA and Silencing Pathways.
S. Mlotshwa, S. E. Schauer, T. H. Smith, A. C. Mallory, J.M. Herr Jr., B. Roth, D. S. Merchant, A. Ray, L. H. Bowman, and V. B. Vance (2005)
PLANT CELL 17, 2873-2885
   Abstract »    Full Text »    PDF »
ABR1, an APETALA2-Domain Transcription Factor That Functions as a Repressor of ABA Response in Arabidopsis.
G. K. Pandey, J. J. Grant, Y. H. Cheong, B. G. Kim, L. Li, and S. Luan (2005)
Plant Physiology 139, 1185-1193
   Abstract »    Full Text »    PDF »
Role of an Arabidopsis AP2/EREBP-Type Transcriptional Repressor in Abscisic Acid and Drought Stress Responses.
C.-P. Song, M. Agarwal, M. Ohta, Y. Guo, U. Halfter, P. Wang, and J.-K. Zhu (2005)
PLANT CELL 17, 2384-2396
   Abstract »    Full Text »    PDF »
Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis.
J.-W. Wang, L.-J. Wang, Y.-B. Mao, W.-J. Cai, H.-W. Xue, and X.-Y. Chen (2005)
PLANT CELL 17, 2204-2216
   Abstract »    Full Text »    PDF »
The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation.
X. Zhang, V. Garreton, and N.-H. Chua (2005)
Genes & Dev. 19, 1532-1543
   Abstract »    Full Text »    PDF »
Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation.
N. Paquet, M. Bernadet, H. Morin, J. Traas, M. Dron, and C. Charon (2005)
J. Exp. Bot. 56, 1605-1614
   Abstract »    Full Text »    PDF »
Leucine-Rich Repeat Receptor-Like Kinase1 Is a Key Membrane-Bound Regulator of Abscisic Acid Early Signaling in Arabidopsis.
Y. Osakabe, K. Maruyama, M. Seki, M. Satou, K. Shinozaki, and K. Yamaguchi-Shinozaki (2005)
PLANT CELL 17, 1105-1119
   Abstract »    Full Text »    PDF »
A WRKY Gene from Creosote Bush Encodes an Activator of the Abscisic Acid Signaling Pathway.
X. Zou, J. R. Seemann, D. Neuman, and Q. J. Shen (2004)
J. Biol. Chem. 279, 55770-55779
   Abstract »    Full Text »    PDF »
Isolation and Characterization of Novel Mutants Affecting the Abscisic Acid Sensitivity of Arabidopsis Germination and Seedling Growth.
N. Nishimura, T. Yoshida, M. Murayama, T. Asami, K. Shinozaki, and T. Hirayama (2004)
Plant Cell Physiol. 45, 1485-1499
   Abstract »    Full Text »    PDF »
MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems.
P. Laufs, A. Peaucelle, H. Morin, and J. Traas (2004)
Development 131, 4311-4322
   Abstract »    Full Text »    PDF »
Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis.
R. Sunkar and J.-K. Zhu (2004)
PLANT CELL 16, 2001-2019
   Abstract »    Full Text »    PDF »
The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis.
G. K. Pandey, Y. H. Cheong, K.-N. Kim, J. J. Grant, L. Li, W. Hung, C. D'Angelo, S. Weinl, J. Kudla, and S. Luan (2004)
PLANT CELL 16, 1912-1924
   Abstract »    Full Text »    PDF »
Abscisic Acid Induces Rapid Subnuclear Reorganization in Guard Cells.
C. K.-Y. Ng, T. Kinoshita, S. Pandey, K.-i. Shimazaki, and S. M. Assmann (2004)
Plant Physiology 134, 1327-1331
   Full Text »    PDF »
Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C Mutant.
N. Leonhardt, J. M. Kwak, N. Robert, D. Waner, G. Leonhardt, and J. I. Schroeder (2004)
PLANT CELL 16, 596-615
   Abstract »    Full Text »    PDF »
The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation.
M.-H. Han, S. Goud, L. Song, and N. Fedoroff (2004)
PNAS 101, 1093-1098
   Abstract »    Full Text »    PDF »
Negative Regulation of Abscisic Acid Signaling by the Fagus sylvatica FsPP2C1 Plays A Role in Seed Dormancy Regulation and Promotion of Seed Germination.
M. P. Gonzalez-Garcia, D. Rodriguez, C. Nicolas, P. L. Rodriguez, G. Nicolas, and O. Lorenzo (2003)
Plant Physiology 133, 135-144
   Abstract »    Full Text »    PDF »
Viviparous1 Alters Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling.
M. Suzuki, M. G. Ketterling, Q.-B. Li, and D. R. McCarty (2003)
Plant Physiology 132, 1664-1677
   Abstract »    Full Text »    PDF »
The dsRNA binding protein family: critical roles, diverse cellular functions.
L. R. SAUNDERS and G. N. BARBER (2003)
FASEB J 17, 961-983
   Abstract »    Full Text »    PDF »
NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis.
J. M. Kwak, I. C. Mori, Z.-M. Pei, N. Leonhardt, M. A. Torres, J. L. Dangl, R. E. Bloom, S. Bodde, J. D. G. Jones, and J. I. Schroeder (2003)
EMBO J. 22, 2623-2633
   Abstract »    Full Text »    PDF »
Cross-talk in Plant Hormone Signalling: What Arabidopsis Mutants Are Telling Us.
Ann. Bot. 91, 605-612
   Abstract »    Full Text »    PDF »
Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.
S. Hoth, M. Morgante, J.-P. Sanchez, M. K. Hanafey, S. V. Tingey, and N.-H. Chua (2002)
J. Cell Sci. 115, 4891-4900
   Abstract »    Full Text »    PDF »
Nonlinear partial differential equations and applications: Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid.
C. Lu, M.- H. Han, A. Guevara-Garcia, and N. V. Fedoroff (2002)
PNAS 99, 15812-15817
   Abstract »    Full Text »    PDF »
Disruption of a Guard Cell-Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis.
J. M. Kwak, J.-H. Moon, Y. Murata, K. Kuchitsu, N. Leonhardt, A. DeLong, and J. I. Schroeder (2002)
PLANT CELL 14, 2849-2861
   Abstract »    Full Text »    PDF »
Localization, Ion Channel Regulation, and Genetic Interactions during Abscisic Acid Signaling of the Nuclear mRNA Cap-Binding Protein, ABH1.
V. Hugouvieux, Y. Murata, J. J. Young, J. M. Kwak, D. Z. Mackesy, and J. I. Schroeder (2002)
Plant Physiology 130, 1276-1287
   Abstract »    Full Text »    PDF »
C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development.
H. Koiwa, A. W. Barb, L. Xiong, F. Li, M. G. McCully, B.-h. Lee, I. Sokolchik, J. Zhu, Z. Gong, M. Reddy, et al. (2002)
PNAS 99, 10893-10898
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882