Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 14 (11): 2723-2743

Copyright © 2002 by the American Society of Plant Physiologists.

A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions

Wan-Hsing Cheng1,a,b, Akira Endo1,c, Li Zhoua, Jessica Penneya, Huei-Chi Chena, Analilia Arroyod, Patricia Leond, Eiji Nambarae, Tadao Asamif, Mitsunori Seoc,e, Tomokazu Koshibac, and Jen Sheen2,a

a Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
b Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China
c Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
d Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos 62271, Mexico
e Plant Science Center, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
f Plant Functions Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan

2 To whom correspondence should be addressed. E-mail sheen{at}molbio.mgh.harvard.edu; fax 617-726-6893

Abstract: Glc has hormone-like functions and controls many vital processes through mostly unknown mechanisms in plants. We report here on the molecular cloning of GLUCOSE INSENSITIVE1 (GIN1) and ABSCISIC ACID DEFICIENT2 (ABA2) which encodes a unique Arabidopsis short-chain dehydrogenase/reductase (SDR1) that functions as a molecular link between nutrient signaling and plant hormone biosynthesis. SDR1 is related to SDR superfamily members involved in retinoid and steroid hormone biosynthesis in mammals and sex determination in maize. Glc antagonizes ethylene signaling by activating ABA2/GIN1 and other abscisic acid (ABA) biosynthesis and signaling genes, which requires Glc and ABA synergistically. Analyses of aba2/gin1 null mutants define dual functions of endogenous ABA in inhibiting the postgermination developmental switch modulated by distinct Glc and osmotic signals and in promoting organ and body size and fertility in the absence of severe stress. SDR1 is sufficient for the multistep conversion of plastid- and carotenoid-derived xanthoxin to abscisic aldehyde in the cytosol. The surprisingly restricted spatial and temporal expression of SDR1 suggests the dynamic mobilization of ABA precursors and/or ABA.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Intertissue Signal Transfer of Abscisic Acid from Vascular Cells to Guard Cells.
T. Kuromori, E. Sugimoto, and K. Shinozaki (2014)
Plant Physiology 164, 1587-1592
   Abstract »    Full Text »    PDF »
Growth, Yield, and Metabolic Responses of Temperature-stressed Tomato to Grafting onto Rootstocks Differing in Cold Tolerance.
G. Ntatsi, D. Savvas, G. Ntatsi, H.-P. Klaring, and D. Schwarz (2014)
J. Amer. Soc. Hort. Sci. 139, 230-243
   Abstract »    Full Text »    PDF »
Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development.
D. Granot, G. Kelly, O. Stein, and R. David-Schwartz (2014)
J. Exp. Bot. 65, 809-819
   Abstract »    Full Text »    PDF »
GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development.
B. C. Dyson, R. E. Webster, and G. N. Johnson (2014)
Ann. Bot. 113, 643-652
   Abstract »    Full Text »    PDF »
Linking Chloroplast Antioxidant Defense to Carbohydrate Availability: The Transcript Abundance of Stromal Ascorbate Peroxidase Is Sugar-Controlled via Ascorbate Biosynthesis.
I. Heiber, W. Cai, and M. Baier (2014)
Mol Plant 7, 58-70
   Abstract »    Full Text »    PDF »
Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants.
P. K. Lundquist, C. Rosar, A. Brautigam, and A. P. M. Weber (2014)
Mol Plant 7, 14-29
   Abstract »    Full Text »    PDF »
AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis.
Y. Jiao, L. Sun, Y. Song, L. Wang, L. Liu, L. Zhang, B. Liu, N. Li, C. Miao, and F. Hao (2013)
J. Exp. Bot. 64, 4183-4192
   Abstract »    Full Text »    PDF »
The HERBIVORE ELICITOR-REGULATED1 Gene Enhances Abscisic Acid Levels and Defenses against Herbivores in Nicotiana attenuata Plants.
S. T. Dinh, I. T. Baldwin, and I. Galis (2013)
Plant Physiology 162, 2106-2124
   Abstract »    Full Text »    PDF »
Responses of root architecture development to low phosphorus availability: a review.
Y. F. Niu, R. S. Chai, G. L. Jin, H. Wang, C. X. Tang, and Y. S. Zhang (2013)
Ann. Bot. 112, 391-408
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root.
R. Antoni, M. Gonzalez-Guzman, L. Rodriguez, M. Peirats-Llobet, G. A. Pizzio, M. A. Fernandez, N. De Winne, G. De Jaeger, D. Dietrich, M. J. Bennett, et al. (2013)
Plant Physiology 161, 931-941
   Abstract »    Full Text »    PDF »
Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis.
S. Peng, H. Jiang, S. Zhang, L. Chen, X. Li, H. Korpelainen, and C. Li (2012)
Tree Physiol 32, 1541-1555
   Abstract »    Full Text »    PDF »
Arabidopsis Sucrose Transporter SUT4 Interacts with Cytochrome b5-2 to Regulate Seed Germination in Response to Sucrose and Glucose.
Y. Li, L.-L. Li, R.-C. Fan, C.-C. Peng, H.-L. Sun, S.-Y. Zhu, X.-F. Wang, L.-Y. Zhang, and D.-P. Zhang (2012)
Mol Plant 5, 1029-1041
   Abstract »    Full Text »    PDF »
A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice.
S. Song, X. Dai, and W.-H. Zhang (2012)
J. Exp. Bot. 63, 5559-5568
   Abstract »    Full Text »    PDF »
Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize.
R. S. Sekhon, K. L. Childs, N. Santoro, C. E. Foster, C. R. Buell, N. de Leon, and S. M. Kaeppler (2012)
Plant Physiology 159, 1730-1744
   Abstract »    Full Text »    PDF »
Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana.
Y. Zheng, K. S. Schumaker, and Y. Guo (2012)
PNAS 109, 12822-12827
   Abstract »    Full Text »    PDF »
Analysis of Arabidopsis glucose insensitive growth Mutants Reveals the Involvement of the Plastidial Copper Transporter PAA1 in Glucose-Induced Intracellular Signaling.
S. A. Lee, E. K. Yoon, J.-O. Heo, M.-H. Lee, I. Hwang, H. Cheong, W. S. Lee, Y.-s. Hwang, and J. Lim (2012)
Plant Physiology 159, 1001-1012
   Abstract »    Full Text »    PDF »
Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid.
M. Gonzalez-Guzman, G. A. Pizzio, R. Antoni, F. Vera-Sirera, E. Merilo, G. W. Bassel, M. A. Fernandez, M. J. Holdsworth, M. A. Perez-Amador, H. Kollist, et al. (2012)
PLANT CELL 24, 2483-2496
   Abstract »    Full Text »    PDF »
Sugars, signalling, and plant development.
A. L. Eveland and D. P. Jackson (2012)
J. Exp. Bot. 63, 3367-3377
   Abstract »    Full Text »    PDF »
A Vacuolar {beta}-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis.
Z.-Y. Xu, K. H. Lee, T. Dong, J. C. Jeong, J. B. Jin, Y. Kanno, D. H. Kim, S. Y. Kim, M. Seo, R. A. Bressan, et al. (2012)
PLANT CELL 24, 2184-2199
   Abstract »    Full Text »    PDF »
The Pitfalls of Transgenic Selection and New Roles of AtHXK1: A High Level of AtHXK1 Expression Uncouples Hexokinase1-Dependent Sugar Signaling from Exogenous Sugar.
G. Kelly, R. David-Schwartz, N. Sade, M. Moshelion, A. Levi, V. Alchanatis, and D. Granot (2012)
Plant Physiology 159, 47-51
   Full Text »    PDF »
Arabidopsis Hexokinase-Like1 and Hexokinase1 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses.
A. Karve, X. Xia, and B. d. Moore (2012)
Plant Physiology 158, 1965-1975
   Abstract »    Full Text »    PDF »
Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation.
A. Mosquna, F. C. Peterson, S.-Y. Park, J. Lozano-Juste, B. F. Volkman, and S. R. Cutler (2011)
PNAS 108, 20838-20843
   Abstract »    Full Text »    PDF »
An ABRE Promoter Sequence is Involved in Osmotic Stress-Responsive Expression of the DREB2A Gene, Which Encodes a Transcription Factor Regulating Drought-Inducible Genes in Arabidopsis.
J.-S. Kim, J. Mizoi, T. Yoshida, Y. Fujita, J. Nakajima, T. Ohori, D. Todaka, K. Nakashima, T. Hirayama, K. Shinozaki, et al. (2011)
Plant Cell Physiol. 52, 2136-2146
   Abstract »    Full Text »    PDF »
A thermodynamic switch modulates abscisic acid receptor sensitivity.
F. Dupeux, J. Santiago, K. Betz, J. Twycross, S.-Y. Park, L. Rodriguez, M. Gonzalez-Guzman, M. R. Jensen, N. Krasnogor, M. Blackledge, et al. (2011)
EMBO J. 30, 4171-4184
   Abstract »    Full Text »    PDF »
ABA-Mediated Heterophylly is Regulated by Differential Expression of 9-cis-Epoxycarotenoid Dioxygenase 3 in Lilies.
H.-C. Chen, S.-G. Hwang, S.-M. Chen, C.-T. Shii, and W.-H. Cheng (2011)
Plant Cell Physiol. 52, 1806-1821
   Abstract »    Full Text »    PDF »
The Arabidopsis bZIP Gene AtbZIP63 Is a Sensitive Integrator of Transient Abscisic Acid and Glucose Signals.
C. C. Matiolli, J. P. Tomaz, G. T. Duarte, F. M. Prado, L. E. V. Del Bem, A. B. Silveira, L. Gauer, L. G. G. Correa, R. D. Drumond, A. J. C. Viana, et al. (2011)
Plant Physiology 157, 692-705
   Abstract »    Full Text »    PDF »
Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm).
F. P. Pieruzzi, L. L. C. Dias, T. S. Balbuena, C. Santa-Catarina, A. L. W. d. Santos, and E. I. S. Floh (2011)
Ann. Bot. 108, 337-345
   Abstract »    Full Text »    PDF »
The Arabidopsis Mitochondria-Localized Pentatricopeptide Repeat Protein PGN Functions in Defense against Necrotrophic Fungi and Abiotic Stress Tolerance.
K. Laluk, S. AbuQamar, and T. Mengiste (2011)
Plant Physiology 156, 2053-2068
   Abstract »    Full Text »    PDF »
EXORDIUM-LIKE1 Promotes Growth during Low Carbon Availability in Arabidopsis.
F. Schroder, J. Lisso, and C. Mussig (2011)
Plant Physiology 156, 1620-1630
   Abstract »    Full Text »    PDF »
ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions.
C. Seiler, V. T. Harshavardhan, K. Rajesh, P. S. Reddy, M. Strickert, H. Rolletschek, U. Scholz, U. Wobus, and N. Sreenivasulu (2011)
J. Exp. Bot. 62, 2615-2632
   Abstract »    Full Text »    PDF »
The Plant Cuticle Is Required for Osmotic Stress Regulation of Abscisic Acid Biosynthesis and Osmotic Stress Tolerance in Arabidopsis.
Z.-Y. Wang, L. Xiong, W. Li, J.-K. Zhu, and J. Zhu (2011)
PLANT CELL 23, 1971-1984
   Abstract »    Full Text »    PDF »
Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain.
P. Li, J. J. Wind, X. Shi, H. Zhang, J. Hanson, S. C. Smeekens, and S. Teng (2011)
PNAS 108, 3436-3441
   Abstract »    Full Text »    PDF »
Molecular Basis of the Core Regulatory Network in ABA Responses: Sensing, Signaling and Transport.
T. Umezawa, K. Nakashima, T. Miyakawa, T. Kuromori, M. Tanokura, K. Shinozaki, and K. Yamaguchi-Shinozaki (2010)
Plant Cell Physiol. 51, 1821-1839
   Abstract »    Full Text »    PDF »
Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae).
P. P. Tonini, E. Purgatto, and M. S. Buckeridge (2010)
Ann. Bot. 106, 607-616
   Abstract »    Full Text »    PDF »
The Plant-Specific SR45 Protein Negatively Regulates Glucose and ABA Signaling during Early Seedling Development in Arabidopsis.
R. F. Carvalho, S. D. Carvalho, and P. Duque (2010)
Plant Physiology 154, 772-783
   Abstract »    Full Text »    PDF »
Increased Leaf Size: Different Means to an End.
N. Gonzalez, S. De Bodt, R. Sulpice, Y. Jikumaru, E. Chae, S. Dhondt, T. Van Daele, L. De Milde, D. Weigel, Y. Kamiya, et al. (2010)
Plant Physiology 153, 1261-1279
   Abstract »    Full Text »    PDF »
SUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response.
Y. Huang, C. Y. Li, D. L. Pattison, W. M. Gray, S. Park, and S. I. Gibson (2010)
Plant Physiology 152, 1889-1900
   Abstract »    Full Text »    PDF »
The Arabidopsis bZIP1 Transcription Factor Is Involved in Sugar Signaling, Protein Networking, and DNA Binding.
S. G. Kang, J. Price, P.-C. Lin, J. C. Hong, and J.-C. Jang (2010)
Mol Plant 3, 361-373
   Abstract »    Full Text »    PDF »
Low Glucose Uncouples Hexokinase1-Dependent Sugar Signaling from Stress and Defense Hormone Abscisic Acid and C2H4 Responses in Arabidopsis.
Y.-H. Cho, J. Sheen, and S.-D. Yoo (2010)
Plant Physiology 152, 1180-1182
   Full Text »    PDF »
ABC transporter AtABCG25 is involved in abscisic acid transport and responses.
T. Kuromori, T. Miyaji, H. Yabuuchi, H. Shimizu, E. Sugimoto, A. Kamiya, Y. Moriyama, and K. Shinozaki (2010)
PNAS 107, 2361-2366
   Abstract »    Full Text »    PDF »
Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.
G. Zolla, Y. M. Heimer, and S. Barak (2010)
J. Exp. Bot. 61, 211-224
   Abstract »    Full Text »    PDF »
Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development.
X. Zhou, P. Cooke, and L. Li (2010)
J. Exp. Bot. 61, 357-367
   Abstract »    Full Text »    PDF »
Expression of the Arabidopsis Mutant abi1 Gene Alters Abscisic Acid Sensitivity, Stomatal Development, and Growth Morphology in Gray Poplars.
M. Arend, J.-P. Schnitzler, B. Ehlting, R. Hansch, T. Lange, H. Rennenberg, A. Himmelbach, E. Grill, and J. Fromm (2009)
Plant Physiology 151, 2110-2119
   Abstract »    Full Text »    PDF »
Apple Sucrose Transporter SUT1 and Sorbitol Transporter SOT6 Interact with Cytochrome b5 to Regulate Their Affinity for Substrate Sugars.
R.-C. Fan, C.-C. Peng, Y.-H. Xu, X.-F. Wang, Y. Li, Y. Shang, S.-Y. Du, R. Zhao, X.-Y. Zhang, L.-Y. Zhang, et al. (2009)
Plant Physiology 150, 1880-1901
   Abstract »    Full Text »    PDF »
BT2, a BTB Protein, Mediates Multiple Responses to Nutrients, Stresses, and Hormones in Arabidopsis.
K. K. Mandadi, A. Misra, S. Ren, and T. D. McKnight (2009)
Plant Physiology 150, 1930-1939
   Abstract »    Full Text »    PDF »
A Novel ABA Insensitive Mutant of Lotus japonicus with a Wilty Phenotype Displays Unaltered Nodulation Regulation.
B. Biswas, P. K. Chan, and P. M. Gresshoff (2009)
Mol Plant 2, 487-499
   Abstract »    Full Text »    PDF »
The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action.
C. Sirichandra, A. Wasilewska, F. Vlad, C. Valon, and J. Leung (2009)
J. Exp. Bot. 60, 1439-1463
   Abstract »    Full Text »    PDF »
The Short-Rooted Phenotype of the brevis radix Mutant Partly Reflects Root Abscisic Acid Hypersensitivity.
A. Rodrigues, J. Santiago, S. Rubio, A. Saez, K. S. Osmont, J. Gadea, C. S. Hardtke, and P. L. Rodriguez (2009)
Plant Physiology 149, 1917-1928
   Abstract »    Full Text »    PDF »
Glucose-Induced Delay of Seed Germination in Rice is Mediated by the Suppression of ABA Catabolism Rather Than an Enhancement of ABA Biosynthesis.
G. Zhu, N. Ye, and J. Zhang (2009)
Plant Cell Physiol. 50, 644-651
   Abstract »    Full Text »    PDF »
ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 Are Polygalacturonases Required for Cell Separation during Reproductive Development in Arabidopsis.
M. Ogawa, P. Kay, S. Wilson, and S. M. Swain (2009)
PLANT CELL 21, 216-233
   Abstract »    Full Text »    PDF »
Characterization of OsbZIP23 as a Key Player of the Basic Leucine Zipper Transcription Factor Family for Conferring Abscisic Acid Sensitivity and Salinity and Drought Tolerance in Rice.
Y. Xiang, N. Tang, H. Du, H. Ye, and L. Xiong (2008)
Plant Physiology 148, 1938-1952
   Abstract »    Full Text »    PDF »
Aminoethoxyvinylglycine Inhibits Fruit Abscission Induced by Naphthaleneacetic Acid and Associated Relationships with Expression of Genes for Ethylene Biosynthesis, Perception, and Cell Wall Degradation in 'Delicious' Apples.
H. Zhu, E. P. Beers, and R. Yuan (2008)
J. Amer. Soc. Hort. Sci. 133, 727-734
   Abstract »    Full Text »    PDF »
Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling.
A. Wawrzynska, K. M. Christiansen, Y. Lan, N. L. Rodibaugh, and R. W. Innes (2008)
Plant Physiology 148, 1510-1522
   Abstract »    Full Text »    PDF »
Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in Microspore/Pollen and Tapetum of Rice.
K. Hirano, K. Aya, T. Hobo, H. Sakakibara, M. Kojima, R. A. Shim, Y. Hasegawa, M. Ueguchi-Tanaka, and M. Matsuoka (2008)
Plant Cell Physiol. 49, 1429-1450
   Abstract »    Full Text »    PDF »
Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes.
B. K. Zolman, N. Martinez, A. Millius, A. R. Adham, and B. Bartel (2008)
Genetics 180, 237-251
   Abstract »    Full Text »    PDF »
Drought Induction of Arabidopsis 9-cis-Epoxycarotenoid Dioxygenase Occurs in Vascular Parenchyma Cells.
A. Endo, Y. Sawada, H. Takahashi, M. Okamoto, K. Ikegami, H. Koiwai, M. Seo, T. Toyomasu, W. Mitsuhashi, K. Shinozaki, et al. (2008)
Plant Physiology 147, 1984-1993
   Abstract »    Full Text »    PDF »
Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana.
Y. Li, L. Zheng, F. Corke, C. Smith, and M. W. Bevan (2008)
Genes & Dev. 22, 1331-1336
   Abstract »    Full Text »    PDF »
Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery.
R. Aroca, P. Vernieri, and J. M. Ruiz-Lozano (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Roles of the bundle sheath cells in leaves of C3 plants.
R. C. Leegood (2008)
J. Exp. Bot. 59, 1663-1673
   Abstract »    Full Text »    PDF »
An Update on Abscisic Acid Signaling in Plants and More ....
A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, F. Jammes, C. Valon, N. F. d. Frey, and J. Leung (2008)
Mol Plant 1, 198-217
   Abstract »    Full Text »    PDF »
High Temperature-Induced Abscisic Acid Biosynthesis and Its Role in the Inhibition of Gibberellin Action in Arabidopsis Seeds.
S. Toh, A. Imamura, A. Watanabe, K. Nakabayashi, M. Okamoto, Y. Jikumaru, A. Hanada, Y. Aso, K. Ishiyama, N. Tamura, et al. (2008)
Plant Physiology 146, 1368-1385
   Abstract »    Full Text »    PDF »
Signaling from an Altered Cell Wall to the Nucleus Mediates Sugar-Responsive Growth and Development in Arabidopsis thaliana.
Y. Li, C. Smith, F. Corke, L. Zheng, Z. Merali, P. Ryden, P. Derbyshire, K. Waldron, and M. W. Bevan (2007)
PLANT CELL 19, 2500-2515
   Abstract »    Full Text »    PDF »
Ethylene Insensitivity Results in Down-Regulation of Rubisco Expression and Photosynthetic Capacity in Tobacco.
D. Tholen, T. L. Pons, L. A.C.J. Voesenek, and H. Poorter (2007)
Plant Physiology 144, 1305-1315
   Abstract »    Full Text »    PDF »
Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease.
M. de Torres-Zabala, W. Truman, M. H. Bennett, G. Lafforgue, J. W. Mansfield, P. Rodriguez Egea, L. Bogre, and M. Grant (2007)
EMBO J. 26, 1434-1443
   Abstract »    Full Text »    PDF »
Ectopic Expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis Promotes Seed Dormancy and Stress Tolerance.
P.-C. Lin, S.-G. Hwang, A. Endo, M. Okamoto, T. Koshiba, and W.-H. Cheng (2007)
Plant Physiology 143, 745-758
   Abstract »    Full Text »    PDF »
Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit.
H. Ren, Z. Gao, L. Chen, K. Wei, J. Liu, Y. Fan, W. J. Davies, W. Jia, and J. Zhang (2007)
J. Exp. Bot. 58, 211-219
   Abstract »    Full Text »    PDF »
KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling.
S. L. Stone, L. A. Williams, L. M. Farmer, R. D. Vierstra, and J. Callis (2006)
PLANT CELL 18, 3415-3428
   Abstract »    Full Text »    PDF »
The SCABRA3 Nuclear Gene Encodes the Plastid RpoTp RNA Polymerase, Which Is Required for Chloroplast Biogenesis and Mesophyll Cell Proliferation in Arabidopsis.
A. Hricova, V. Quesada, and J. L. Micol (2006)
Plant Physiology 141, 942-956
   Abstract »    Full Text »    PDF »
CYP707A1 and CYP707A2, Which Encode Abscisic Acid 8'-Hydroxylases, Are Indispensable for Proper Control of Seed Dormancy and Germination in Arabidopsis.
M. Okamoto, A. Kuwahara, M. Seo, T. Kushiro, T. Asami, N. Hirai, Y. Kamiya, T. Koshiba, and E. Nambara (2006)
Plant Physiology 141, 97-107
   Abstract »    Full Text »    PDF »
Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.
Y. Li, K. K. Lee, S. Walsh, C. Smith, S. Hadingham, K. Sorefan, G. Cawley, and M. W. Bevan (2006)
Genome Res. 16, 414-427
   Abstract »    Full Text »    PDF »
Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes.
Y. Liang and J. M. Harris (2005)
Am. J. Botany 92, 1675-1683
   Abstract »    Full Text »    PDF »
A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development.
J. M. Barrero, P. Piqueras, M. Gonzalez-Guzman, R. Serrano, P. L. Rodriguez, M. R. Ponce, and J. L. Micol (2005)
J. Exp. Bot. 56, 2071-2083
   Abstract »    Full Text »    PDF »
Effect of the energy supply on filamentous growth and development in Physcomitrella patens.
M. Thelander, T. Olsson, and H. Ronne (2005)
J. Exp. Bot. 56, 653-662
   Abstract »    Full Text »    PDF »
The Different Growth Responses of the Arabidopsis thaliana Leaf Blade and the Petiole during Shade Avoidance are Regulated by Photoreceptors and Sugar.
T. Kozuka, G. Horiguchi, G.-T. Kim, M. Ohgishi, T. Sakai, and H. Tsukaya (2005)
Plant Cell Physiol. 46, 213-223
   Abstract »    Full Text »    PDF »
Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis.
A. Christmann, T. Hoffmann, I. Teplova, E. Grill, and A. Muller (2005)
Plant Physiology 137, 209-219
   Abstract »    Full Text »    PDF »
Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis.
J. P. Anderson, E. Badruzsaufari, P. M. Schenk, J. M. Manners, O. J. Desmond, C. Ehlert, D. J. Maclean, P. R. Ebert, and K. Kazan (2004)
PLANT CELL 16, 3460-3479
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882