Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 19 (1): 63-73

Copyright © 2007 by the American Society of Plant Physiologists.

Stomatal Development and Patterning Are Regulated by Environmentally Responsive Mitogen-Activated Protein Kinases in Arabidopsis[W]

Huachun Wanga,b,c, Njabulo Ngwenyamab,c, Yidong Liub,c, John C. Walkera,c, and Shuqun Zhangb,c,1

a Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
b Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
c Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211

1 To whom correspondence should be addressed. E-mail zhangsh{at}missouri.edu; fax 573-884-9676.

Abstract: Stomata are specialized epidermal structures that regulate gas (CO2 and O2) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated by both genetic and environmental signals. Here, we report that Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6, two environmentally responsive mitogen-activated protein kinases (MAPKs), and their upstream MAPK kinases, MKK4 and MKK5, are key regulators of stomatal development and patterning. Loss of function of MKK4/MKK5 or MPK3/MPK6 disrupts the coordinated cell fate specification of stomata versus pavement cells, resulting in the formation of clustered stomata. Conversely, activation of MKK4/MKK5-MPK3/MPK6 causes the suppression of asymmetric cell divisions and stomatal cell fate specification, resulting in a lack of stomatal differentiation. We further establish that the MKK4/MKK5-MPK3/MPK6 module is downstream of YODA, a MAPKKK. The establishment of a complete MAPK signaling cascade as a key regulator of stomatal development and patterning advances our understanding of the regulatory mechanisms of intercellular signaling events that coordinate cell fate specification during stomatal development.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).
Y. Sun, C. Wang, B. Yang, F. Wu, X. Hao, W. Liang, F. Niu, J. Yan, H. Zhang, B. Wang, et al. (2014)
J. Exp. Bot. 65, 2171-2188
   Abstract »    Full Text »    PDF »
Salt Stress in Arabidopsis: Lipid Transfer Protein AZI1 and Its Control by Mitogen-Activated Protein Kinase MPK3.
A. Pitzschke, S. Datta, and H. Persak (2014)
Mol Plant 7, 722-738
   Abstract »    Full Text »    PDF »
Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development.
J. S. Lopez-Bucio, J. G. Dubrovsky, J. Raya-Gonzalez, Y. Ugartechea-Chirino, J. Lopez-Bucio, L. A. de Luna-Valdez, M. Ramos-Vega, P. Leon, and A. A. Guevara-Garcia (2014)
J. Exp. Bot. 65, 169-183
   Abstract »    Full Text »    PDF »
Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
S. M. Bemis, J. S. Lee, E. D. Shpak, and K. U. Torii (2013)
J. Exp. Bot. 64, 5323-5333
   Abstract »    Full Text »    PDF »
Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens.
M.-T. O'Donoghue, C. Chater, S. Wallace, J. E. Gray, D. J. Beerling, and A. J. Fleming (2013)
J. Exp. Bot. 64, 3567-3581
   Abstract »    Full Text »    PDF »
Differential Effects of the Peptides Stomagen, EPF1 and EPF2 on Activation of MAP Kinase MPK6 and the SPCH Protein Level.
P. K. Jewaria, T. Hara, H. Tanaka, T. Kondo, S. Betsuyaku, S. Sawa, Y. Sakagami, S. Aimoto, and T. Kakimoto (2013)
Plant Cell Physiol. 54, 1253-1262
   Abstract »    Full Text »    PDF »
ERECTA Family Genes Regulate Auxin Transport in the Shoot Apical Meristem and Forming Leaf Primordia.
M.-K. Chen, R. L. Wilson, K. Palme, F. A. Ditengou, and E. D. Shpak (2013)
Plant Physiology 162, 1978-1991
   Abstract »    Full Text »    PDF »
MKK5 Regulates High Light-Induced Gene Expression of Cu/Zn Superoxide Dismutase 1 and 2 in Arabidopsis.
Y. Xing, Q. Cao, Q. Zhang, L. Qin, W. Jia, and J. Zhang (2013)
Plant Cell Physiol. 54, 1217-1227
   Abstract »    Full Text »    PDF »
What Causes Opposing Actions of Brassinosteroids on Stomatal Development?.
L. Serna (2013)
Plant Physiology 162, 3-8
   Full Text »    PDF »
Brassinosteroid-regulated GSK3/Shaggy-like Kinases Phosphorylate Mitogen-activated Protein (MAP) Kinase Kinases, Which Control Stomata Development in Arabidopsis thaliana.
M. Khan, W. Rozhon, J. Bigeard, D. Pflieger, S. Husar, A. Pitzschke, M. Teige, C. Jonak, H. Hirt, and B. Poppenberger (2013)
J. Biol. Chem. 288, 7519-7527
   Abstract »    Full Text »    PDF »
Phosphorylation of an ERF Transcription Factor by Arabidopsis MPK3/MPK6 Regulates Plant Defense Gene Induction and Fungal Resistance.
X. Meng, J. Xu, Y. He, K.-Y. Yang, B. Mordorski, Y. Liu, and S. Zhang (2013)
PLANT CELL 25, 1126-1142
   Abstract »    Full Text »    PDF »
Phosphorylation and Stabilization of Arabidopsis MAP Kinase Phosphatase 1 in Response to UV-B Stress.
M. A. Gonzalez Besteiro and R. Ulm (2013)
J. Biol. Chem. 288, 480-486
   Abstract »    Full Text »    PDF »
Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress.
Y. Osakabe, K. Yamaguchi-Shinozaki, K. Shinozaki, and L.-S. P. Tran (2013)
J. Exp. Bot. 64, 445-458
   Abstract »    Full Text »    PDF »
A MAPK Cascade Downstream of ERECTA Receptor-Like Protein Kinase Regulates Arabidopsis Inflorescence Architecture by Promoting Localized Cell Proliferation.
X. Meng, H. Wang, Y. He, Y. Liu, J. C. Walker, K. U. Torii, and S. Zhang (2012)
PLANT CELL 24, 4948-4960
   Abstract »    Full Text »    PDF »
Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication.
O. S. Lau and D. C. Bergmann (2012)
Development 139, 3683-3692
   Abstract »    Full Text »    PDF »
Drought induces alterations in the stomatal development program in Populus.
E. T. Hamanishi, B. R. Thomas, and M. M. Campbell (2012)
J. Exp. Bot. 63, 4959-4971
   Abstract »    Full Text »    PDF »
A Dominant Allele of Arabidopsis Pectin-Binding Wall-Associated Kinase Induces a Stress Response Suppressed by MPK6 but Not MPK3 Mutations.
B. D. Kohorn, S. L. Kohorn, T. Todorova, G. Baptiste, K. Stansky, and M. McCullough (2012)
Mol Plant 5, 841-851
   Abstract »    Full Text »    PDF »
GSK3-Like Kinases Integrate Brassinosteroid Signaling and Stomatal Development.
S. A. Casson and A. M. Hetherington (2012)
Science Signaling 5, pe30
   Abstract »    Full Text »    PDF »
Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development.
P. J. Tricker, J. G. Gibbings, C. M. Rodriguez Lopez, P. Hadley, and M. J. Wilkinson (2012)
J. Exp. Bot. 63, 3799-3813
   Abstract »    Full Text »    PDF »
DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice.
H. Tong, L. Liu, Y. Jin, L. Du, Y. Yin, Q. Qian, L. Zhu, and C. Chu (2012)
PLANT CELL 24, 2562-2577
   Abstract »    Full Text »    PDF »
Regulation of Plasmodesmatal Permeability and Stomatal Patterning by the Glycosyltransferase-Like Protein KOBITO1.
D. Kong, R. Karve, A. Willet, M.-K. Chen, J. Oden, and E. D. Shpak (2012)
Plant Physiology 159, 156-168
   Abstract »    Full Text »    PDF »
A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in Lotus japonicus.
T. Chen, H. Zhu, D. Ke, K. Cai, C. Wang, H. Gou, Z. Hong, and Z. Zhang (2012)
PLANT CELL 24, 823-838
   Abstract »    Full Text »    PDF »
Silencing MPK4 in Nicotiana attenuata Enhances Photosynthesis and Seed Production But Compromises Abscisic Acid-Induced Stomatal Closure and Guard Cell-Mediated Resistance to Pseudomonas syringae pv tomato DC3000.
C. Hettenhausen, I. T. Baldwin, and J. Wu (2012)
Plant Physiology 158, 759-776
   Abstract »    Full Text »    PDF »
A Tale of Two Systems: Peptide Ligand-Receptor Pairs in Plant Development.
J. S. Lee and K. U. Torii (2012)
Cold Spring Harb Symp Quant Biol 77, 83-89
   Abstract »    Full Text »    PDF »
On Fate and Flexibility in Stomatal Development.
D. L. Wengier and D. C. Bergmann (2012)
Cold Spring Harb Symp Quant Biol 77, 53-62
   Abstract »    Full Text »    PDF »
Increased Leaf Angle1, a Raf-Like MAPKKK That Interacts with a Nuclear Protein Family, Regulates Mechanical Tissue Formation in the Lamina Joint of Rice.
J. Ning, B. Zhang, N. Wang, Y. Zhou, and L. Xiong (2011)
PLANT CELL 23, 4334-4347
   Abstract »    Full Text »    PDF »
Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata.
M. Heinrich, I. T. Baldwin, and J. Wu (2011)
J. Exp. Bot. 62, 4355-4365
   Abstract »    Full Text »    PDF »
Salicylic acid beyond defence: its role in plant growth and development.
M. Rivas-San Vicente and J. Plasencia (2011)
J. Exp. Bot. 62, 3321-3338
   Abstract »    Full Text »    PDF »
Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in Nicotiana benthamiana.
C. Segonzac, D. Feike, S. Gimenez-Ibanez, D. R. Hann, C. Zipfel, and J. P. Rathjen (2011)
Plant Physiology 156, 687-699
   Abstract »    Full Text »    PDF »
Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis.
G. Mao, X. Meng, Y. Liu, Z. Zheng, Z. Chen, and S. Zhang (2011)
PLANT CELL 23, 1639-1653
   Abstract »    Full Text »    PDF »
Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo.
S. Jeong, M. Bayer, and W. Lukowitz (2011)
J. Exp. Bot. 62, 1687-1697
   Abstract »    Full Text »    PDF »
Antisense Inhibition of the Iron-Sulphur Subunit of Succinate Dehydrogenase Enhances Photosynthesis and Growth in Tomato via an Organic Acid-Mediated Effect on Stomatal Aperture.
W. L. Araujo, A. Nunes-Nesi, S. Osorio, B. Usadel, D. Fuentes, R. Nagy, I. Balbo, M. Lehmann, C. Studart-Witkowski, T. Tohge, et al. (2011)
PLANT CELL 23, 600-627
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Regulated by the CLAVATA Receptors Contributes to Shoot Apical Meristem Homeostasis.
S. Betsuyaku, F. Takahashi, A. Kinoshita, H. Miwa, K. Shinozaki, H. Fukuda, and S. Sawa (2011)
Plant Cell Physiol. 52, 14-29
   Abstract »    Full Text »    PDF »
The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1.
C. Y. Yoo, H. E. Pence, J. B. Jin, K. Miura, M. J. Gosney, P. M. Hasegawa, and M. V. Mickelbart (2010)
PLANT CELL 22, 4128-4141
   Abstract »    Full Text »    PDF »
Plant Immunity Triggered by Microbial Molecular Signatures.
J. Zhang and J.-M. Zhou (2010)
Mol Plant 3, 783-793
   Abstract »    Full Text »    PDF »
Hydrogen Peroxide-Mediated Activation of MAP Kinase 6 Modulates Nitric Oxide Biosynthesis and Signal Transduction in Arabidopsis.
P. Wang, Y. Du, Y. Li, D. Ren, and C.-P. Song (2010)
PLANT CELL 22, 2981-2998
   Abstract »    Full Text »    PDF »
In Silico Analysis Reveals 75 Members of Mitogen-Activated Protein Kinase Kinase Kinase Gene Family in Rice.
K. P. Rao, T. Richa, K. Kumar, B. Raghuram, and A. K. Sinha (2010)
DNA Res 17, 139-153
   Abstract »    Full Text »    PDF »
A Pseudomonas syringae ADP-Ribosyltransferase Inhibits Arabidopsis Mitogen-Activated Protein Kinase Kinases.
Y. Wang, J. Li, S. Hou, X. Wang, Y. Li, D. Ren, S. Chen, X. Tang, and J.-M. Zhou (2010)
PLANT CELL 22, 2033-2044
   Abstract »    Full Text »    PDF »
Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis CHORUS (GLUCAN SYNTHASE-LIKE 8).
J. M. Guseman, J. S. Lee, N. L. Bogenschutz, K. M. Peterson, R. E. Virata, B. Xie, M. M. Kanaoka, Z. Hong, and K. U. Torii (2010)
Development 137, 1731-1741
   Abstract »    Full Text »    PDF »
Regional specification of stomatal production by the putative ligand CHALLAH.
E. B. Abrash and D. C. Bergmann (2010)
Development 137, 447-455
   Abstract »    Full Text »    PDF »
Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development.
K. M. Peterson, A. L. Rychel, and K. U. Torii (2010)
PLANT CELL 22, 296-306
   Abstract »    Full Text »    PDF »
A Raf-Like MAPKKK Gene DSM1 Mediates Drought Resistance through Reactive Oxygen Species Scavenging in Rice.
J. Ning, X. Li, L. M. Hicks, and L. Xiong (2010)
Plant Physiology 152, 876-890
   Abstract »    Full Text »    PDF »
Bioinformatic and Systems Biology Tools to Generate Testable Models of Signaling Pathways and Their Targets.
A. Pitzschke and H. Hirt (2010)
Plant Physiology 152, 460-469
   Full Text »    PDF »
MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling.
F. Jammes, C. Song, D. Shin, S. Munemasa, K. Takeda, D. Gu, D. Cho, S. Lee, R. Giordo, S. Sritubtim, et al. (2009)
PNAS 106, 20520-20525
   Abstract »    Full Text »    PDF »
Novel and Expanded Roles for MAPK Signaling in Arabidopsis Stomatal Cell Fate Revealed by Cell Type-Specific Manipulations.
G. R. Lampard, W. Lukowitz, B. E. Ellis, and D. C. Bergmann (2009)
PLANT CELL 21, 3506-3517
   Abstract »    Full Text »    PDF »
Unraveling the MAPK Signaling Network in Stomatal Development.
N. A. Eckardt (2009)
PLANT CELL 21, 3413
   Full Text »    PDF »
Symmetry Breaking in Plants: Molecular Mechanisms Regulating Asymmetric Cell Divisions in Arabidopsis.
J. J. Petricka, J. M. Van Norman, and P. N. Benfey (2009)
Cold Spring Harb Perspect Biol 1, a000497
   Abstract »    Full Text »    PDF »
Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis.
C.-Y. Kang, H.-L. Lian, F.-F. Wang, J.-R. Huang, and H.-Q. Yang (2009)
PLANT CELL 21, 2624-2641
   Abstract »    Full Text »    PDF »
Recent Advances in PAMP-Triggered Immunity against Bacteria: Pattern Recognition Receptors Watch over and Raise the Alarm.
V. Nicaise, M. Roux, and C. Zipfel (2009)
Plant Physiology 150, 1638-1647
   Full Text »    PDF »
Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens.
J. A. Lake and R. N. Wade (2009)
J. Exp. Bot. 60, 3123-3131
   Abstract »    Full Text »    PDF »
Epidermal Cell Density is Autoregulated via a Secretory Peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis Leaves.
K. Hara, T. Yokoo, R. Kajita, T. Onishi, S. Yahata, K. M. Peterson, K. U. Torii, and T. Kakimoto (2009)
Plant Cell Physiol. 50, 1019-1031
   Abstract »    Full Text »    PDF »
Emerging Parallels between Stomatal and Muscle Cell Lineages.
L. Serna (2009)
Plant Physiology 149, 1625-1631
   Full Text »    PDF »
PLANT SCIENCE: Paternal Patterning Cue.
U. Grossniklaus (2009)
Science 323, 1439-1440
   Abstract »    Full Text »    PDF »
Paternal Control of Embryonic Patterning in Arabidopsis thaliana.
M. Bayer, T. Nawy, C. Giglione, M. Galli, T. Meinnel, and W. Lukowitz (2009)
Science 323, 1485-1488
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinases 3 and 6 Are Required for Full Priming of Stress Responses in Arabidopsis thaliana.
G. J.M. Beckers, M. Jaskiewicz, Y. Liu, W. R. Underwood, S. Y. He, S. Zhang, and U. Conrath (2009)
PLANT CELL 21, 944-953
   Abstract »    Full Text »    PDF »
Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses.
N. J. M. Saibo, T. Lourenco, and M. M. Oliveira (2009)
Ann. Bot. 103, 609-623
   Abstract »    Full Text »    PDF »
Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling.
A. Pitzschke and H. Hirt (2009)
Plant Physiology 149, 606-615
   Full Text »    PDF »
PLANT SCIENCE: Pores in Place.
F. D. Sack and J.-G. Chen (2009)
Science 323, 592-593
   Abstract »    Full Text »    PDF »
MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays.
S. C. Popescu, G. V. Popescu, S. Bachan, Z. Zhang, M. Gerstein, M. Snyder, and S. P. Dinesh-Kumar (2009)
Genes & Dev. 23, 80-92
   Abstract »    Full Text »    PDF »
Intercellular Peptide Signals Regulate Plant Meristematic Cell Fate Decisions.
J. E. Gray, S. Casson, and L. Hunt (2008)
Science Signaling 1, pe53
   Abstract »    Full Text »    PDF »
Arabidopsis Stomatal Initiation Is Controlled by MAPK-Mediated Regulation of the bHLH SPEECHLESS.
G. R. Lampard, C. A. MacAlister, and D. C. Bergmann (2008)
Science 322, 1113-1116
   Abstract »    Full Text »    PDF »
Regulation of floral organ abscission in Arabidopsis thaliana.
S. K. Cho, C. T. Larue, D. Chevalier, H. Wang, T.-L. Jinn, S. Zhang, and J. C. Walker (2008)
PNAS 105, 15629-15634
   Abstract »    Full Text »    PDF »
Activation of MAPK Kinase 9 Induces Ethylene and Camalexin Biosynthesis and Enhances Sensitivity to Salt Stress in Arabidopsis.
J. Xu, Y. Li, Y. Wang, H. Liu, L. Lei, H. Yang, G. Liu, and D. Ren (2008)
J. Biol. Chem. 283, 26996-27006
   Abstract »    Full Text »    PDF »
Regulation of Arabidopsis Early Anther Development by the Mitogen-Activated Protein Kinases, MPK3 and MPK6, and the ERECTA and Related Receptor-Like Kinases.
C. L.H. Hord, Y.-J. Sun, L. J. Pillitteri, K. U. Torii, H. Wang, S. Zhang, and H. Ma (2008)
Mol Plant 1, 645-658
   Abstract »    Full Text »    PDF »
Unraveling the Tapestry of Networks Involving Reactive Oxygen Species in Plants.
F. Van Breusegem, J. Bailey-Serres, and R. Mittler (2008)
Plant Physiology 147, 978-984
   Full Text »    PDF »
SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation.
M. M. Kanaoka, L. J. Pillitteri, H. Fujii, Y. Yoshida, N. L. Bogenschutz, J. Takabayashi, J.-K. Zhu, and K. U. Torii (2008)
PLANT CELL 20, 1775-1785
   Abstract »    Full Text »    PDF »
The bHLH Protein, MUTE, Controls Differentiation of Stomata and the Hydathode Pore in Arabidopsis.
L. J. Pillitteri, N. L. Bogenschutz, and K. U. Torii (2008)
Plant Cell Physiol. 49, 934-943
   Abstract »    Full Text »    PDF »
Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance.
D.-L. Yang, Q. Li, Y.-W. Deng, Y.-G. Lou, M.-Y. Wang, G.-X. Zhou, Y.-Y. Zhang, and Z.-H. He (2008)
Mol Plant
   Abstract »    Full Text »    PDF »
An Arabidopsis Protein Phosphorylated in Response to Microbial Elicitation, AtPHOS32, Is a Substrate of MAP Kinases 3 and 6.
G. Merkouropoulos, E. Andreasson, D. Hess, T. Boller, and S. C. Peck (2008)
J. Biol. Chem. 283, 10493-10499
   Abstract »    Full Text »    PDF »
A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis.
D. Ren, Y. Liu, K.-Y. Yang, L. Han, G. Mao, J. Glazebrook, and S. Zhang (2008)
PNAS 105, 5638-5643
   Abstract »    Full Text »    PDF »
Haplo-Insufficiency of MPK3 in MPK6 Mutant Background Uncovers a Novel Function of These Two MAPKs in Arabidopsis Ovule Development.
H. Wang, Y. Liu, K. Bruffett, J. Lee, G. Hause, J. C. Walker, and S. Zhang (2008)
PLANT CELL 20, 602-613
   Abstract »    Full Text »    PDF »
Arabidopsis MAPK Phosphatase 2 (MKP2) Positively Regulates Oxidative Stress Tolerance and Inactivates the MPK3 and MPK6 MAPKs.
J. S. Lee and B. E. Ellis (2007)
J. Biol. Chem. 282, 25020-25029
   Abstract »    Full Text »    PDF »
Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development.
S. M. Bush and P. J. Krysan (2007)
J. Exp. Bot. 58, 2181-2191
   Abstract »    Full Text »    PDF »
Making Holes in Leaves: Promoting Cell State Transitions in Stomatal Development.
M. K. Barton (2007)
PLANT CELL 19, 1140-1143
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882