Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 19 (5): 1549-1564

Copyright © 2007 by the American Society of Plant Physiologists.

Components of the Arabidopsis mRNA Decapping Complex Are Required for Early Seedling Development[W]

David C. Goeres1, Jaimie M. Van Norman1, Weiping Zhang, Nellie A. Fauver, Mary Lou Spencer, and Leslie E. Sieburth2

Department of Biology, University of Utah, Salt Lake City, Utah 84112

2 To whom correspondence should be addressed. E-mail sieburth{at}biology.utah.edu; fax 801-581-4668.

Abstract: To understand the mechanisms controlling vein patterning in Arabidopsis thaliana, we analyzed two phenotypically similar mutants, varicose (vcs) and trident (tdt). We had previously identified VCS, and recently, human VCS was shown to function in mRNA decapping. Here, we report that TDT encodes the mRNA-decapping enzyme. VCS and TDT function together in small cytoplasmic foci that appear to be processing bodies. To understand the developmental requirements for mRNA decapping, we characterized the vcs and tdt phenotypes. These mutants were small and chlorotic, with severe defects in shoot apical meristem formation and cotyledon vein patterning. Many capped mRNAs accumulated in tdt and vcs mutants, but surprisingly, some mRNAs were specifically depleted. In addition, loss of decapping arrested the decay of some mRNAs, while others showed either modest or no decay defects, suggesting that mRNAs may show specificity for particular decay pathways (3' to 5' and 5' to 3'). Furthermore, the severe block to postembryonic development in vcs and tdt and the accompanying accumulation of embryonic mRNAs indicate that decapping is important for the embryo-to-seedling developmental transition.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Uridylation prevents 3' trimming of oligoadenylated mRNAs.
F. M. Sement, E. Ferrier, H. Zuber, R. Merret, M. Alioua, J.-M. Deragon, C. Bousquet-Antonelli, H. Lange, and D. Gagliardi (2013)
Nucleic Acids Res. 41, 7115-7127
   Abstract »    Full Text »    PDF »
Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation.
A. Golisz, P. J. Sikorski, K. Kruszka, and J. Kufel (2013)
Nucleic Acids Res. 41, 6232-6249
   Abstract »    Full Text »    PDF »
Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs.
K. Rogers and X. Chen (2013)
PLANT CELL 25, 2383-2399
   Abstract »    Full Text »    PDF »
Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants.
A. B. Moreno, A. E. Martinez de Alba, F. Bardou, M. D. Crespi, H. Vaucheret, A. Maizel, and A. C. Mallory (2013)
Nucleic Acids Res. 41, 4699-4708
   Abstract »    Full Text »    PDF »
Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci.
L. S. Borowski, A. Dziembowski, M. S. Hejnowicz, P. P. Stepien, and R. J. Szczesny (2013)
Nucleic Acids Res. 41, 1223-1240
   Abstract »    Full Text »    PDF »
Long-Distance Signaling in bypass1 Mutants: Bioassay Development Reveals the bps Signal to Be a Metabolite.
E. Adhikari, D.-K. Lee, P. Giavalisco, and L. E. Sieburth (2013)
Mol Plant 6, 164-173
   Abstract »    Full Text »    PDF »
Loss of Function of Arabidopsis C-Terminal Domain Phosphatase-Like1 Activates Iron Deficiency Responses at the Transcriptional Level.
E. Aksoy, I. S. Jeong, and H. Koiwa (2013)
Plant Physiology 161, 330-345
   Abstract »    Full Text »    PDF »
LSM Proteins Provide Accurate Splicing and Decay of Selected Transcripts to Ensure Normal Arabidopsis Development.
C. Perea-Resa, T. Hernandez-Verdeja, R. Lopez-Cobollo, M. d. M. Castellano, and J. Salinas (2012)
PLANT CELL 24, 4930-4947
   Abstract »    Full Text »    PDF »
Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation.
J. Xu and N.-H. Chua (2012)
EMBO J. 31, 1975-1984
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Embryonic Proteins Synthesized from Long-Lived mRNAs During Germination of Rice Seeds.
N. Sano, H. Permana, R. Kumada, Y. Shinozaki, T. Tanabata, T. Yamada, T. Hirasawa, and M. Kanekatsu (2012)
Plant Cell Physiol. 53, 687-698
   Abstract »    Full Text »    PDF »
Mating Pheromone in Cryptococcus neoformans Is Regulated by a Transcriptional/Degradative "Futile" Cycle.
Y.-D. Park, J. Panepinto, S. Shin, P. Larsen, S. Giles, and P. R. Williamson (2010)
J. Biol. Chem. 285, 34746-34756
   Abstract »    Full Text »    PDF »
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation.
E. Varallyay, A. Valoczi, A. Agyi, J. Burgyan, and Z. Havelda (2010)
EMBO J. 29, 3507-3519
   Abstract »    Full Text »    PDF »
Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes.
W. Zhang, C. Murphy, and L. E. Sieburth (2010)
PNAS 107, 15981-15985
   Abstract »    Full Text »    PDF »
Arabidopsis Deadenylases AtCAF1a and AtCAF1b Play Overlapping and Distinct Roles in Mediating Environmental Stress Responses.
J. W. Walley, D. R. Kelley, G. Nestorova, D. L. Hirschberg, and K. Dehesh (2010)
Plant Physiology 152, 866-875
   Abstract »    Full Text »    PDF »
The Arabidopsis Tandem Zinc Finger Protein AtTZF1 Traffics between the Nucleus and Cytoplasmic Foci and Binds Both DNA and RNA.
M. C. Pomeranz, C. Hah, P.-C. Lin, S. G. Kang, J. J. Finer, P. J. Blackshear, and J.-C. Jang (2010)
Plant Physiology 152, 151-165
   Abstract »    Full Text »    PDF »
Arabidopsis Decapping 5 Is Required for mRNA Decapping, P-Body Formation, and Translational Repression during Postembryonic Development.
J. Xu and N.-H. Chua (2009)
PLANT CELL 21, 3270-3279
   Abstract »    Full Text »    PDF »
Transcriptome-Wide Analysis of Uncapped mRNAs in Arabidopsis Reveals Regulation of mRNA Degradation.
Y. Jiao, J. L. Riechmann, and E. M. Meyerowitz (2008)
PLANT CELL 20, 2571-2585
   Abstract »    Full Text »    PDF »
The CHD3 Remodeler PICKLE Promotes Trimethylation of Histone H3 Lysine 27.
H. Zhang, S. D. Rider Jr., J. T. Henderson, M. Fountain, K. Chuang, V. Kandachar, A. Simons, H. J. Edenberg, J. Romero-Severson, W. M. Muir, et al. (2008)
J. Biol. Chem. 283, 22637-22648
   Abstract »    Full Text »    PDF »
Widespread Translational Inhibition by Plant miRNAs and siRNAs.
P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y. Y. Yamamoto, L. Sieburth, and O. Voinnet (2008)
Science 320, 1185-1190
   Abstract »    Full Text »    PDF »
Transcript-Specific Decapping and Regulated Stability by the Human Dcp2 Decapping Protein.
Y. Li, M.-G. Song, and M. Kiledjian (2008)
Mol. Cell. Biol. 28, 939-948
   Abstract »    Full Text »    PDF »
A novel class of bacteria-induced small RNAs in Arabidopsis.
S. Katiyar-Agarwal, S. Gao, A. Vivian-Smith, and H. Jin (2007)
Genes & Dev. 21, 3123-3134
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882