Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PLANT CELL 19 (8): 2470-2483

Copyright © 2007 by the American Society of Plant Physiologists.

A Downstream Mediator in the Growth Repression Limb of the Jasmonate Pathway[W],[OA]

Yuanxin Yana,1, Stéphanie Stolza, Aurore Chételata, Philippe Reymonda, Marco Pagnib, Lucie Dubugnona, and Edward E. Farmera,2

a Department of Plant Molecular Biology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
b Swiss Institute of Bioinformatics, Vital-IT Group, Génopode, CH-1015 Lausanne, Switzerland

2 Address correspondence to edward.farmer{at}unil.ch.

Abstract: Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis.
S. Song, H. Huang, H. Gao, J. Wang, D. Wu, X. Liu, S. Yang, Q. Zhai, C. Li, T. Qi, et al. (2014)
PLANT CELL 26, 263-279
   Abstract »    Full Text »    PDF »
Role of NINJA in root jasmonate signaling.
I. F. Acosta, D. Gasperini, A. Chetelat, S. Stolz, L. Santuari, and E. E. Farmer (2013)
PNAS 110, 15473-15478
   Abstract »    Full Text »    PDF »
Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior.
F. Schweizer, P. Fernandez-Calvo, M. Zander, M. Diez-Diaz, S. Fonseca, G. Glauser, M. G. Lewsey, J. R. Ecker, R. Solano, and P. Reymond (2013)
PLANT CELL 25, 3117-3132
   Abstract »    Full Text »    PDF »
Regulation of Stamen Development by Coordinated Actions of Jasmonate, Auxin, and Gibberellin in Arabidopsis.
S. Song, T. Qi, H. Huang, and D. Xie (2013)
Mol Plant 6, 1065-1073
   Abstract »    Full Text »    PDF »
12-oxo-phytodienoic acid interaction with cyclophilin CYP20-3 is a benchmark for understanding retrograde signaling in plants.
S. Kopriva (2013)
PNAS 110, 9197-9198
   Full Text »    PDF »
Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.
C. Wasternack and B. Hause (2013)
Ann. Bot. 111, 1021-1058
   Abstract »    Full Text »    PDF »
Negative Feedback Control of Jasmonate Signaling by an Alternative Splice Variant of JAZ10.
J. E. Moreno, C. Shyu, M. L. Campos, L. C. Patel, H. S. Chung, J. Yao, S. Y. He, and G. A. Howe (2013)
Plant Physiology 162, 1006-1017
   Abstract »    Full Text »    PDF »
MYC2: The Master in Action.
K. Kazan and J. M. Manners (2013)
Mol Plant 6, 686-703
   Abstract »    Full Text »    PDF »
A bHLH-Type Transcription Factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, Acts as a Repressor to Negatively Regulate Jasmonate Signaling in Arabidopsis.
M. Nakata, N. Mitsuda, M. Herde, A. J. K. Koo, J. E. Moreno, K. Suzuki, G. A. Howe, and M. Ohme-Takagi (2013)
PLANT CELL 25, 1641-1656
   Abstract »    Full Text »    PDF »
Jasmonate Controls Leaf Growth by Repressing Cell Proliferation and the Onset of Endoreduplication while Maintaining a Potential Stand-By Mode.
S. Noir, M. Bomer, N. Takahashi, T. Ishida, T.-L. Tsui, V. Balbi, H. Shanahan, K. Sugimoto, and A. Devoto (2013)
Plant Physiology 161, 1930-1951
   Abstract »    Full Text »    PDF »
ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana.
I. Fridborg, A. Johansson, J. Lagensjo, N. Leelarasamee, K. Flokova, D. Tarkowska, J. Meijer, and S. Bejai (2013)
J. Exp. Bot. 64, 935-948
   Abstract »    Full Text »    PDF »
Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59.
D. Van der Does, A. Leon-Reyes, A. Koornneef, M. C. Van Verk, N. Rodenburg, L. Pauwels, A. Goossens, A. P. Korbes, J. Memelink, T. Ritsema, et al. (2013)
PLANT CELL 25, 744-761
   Abstract »    Full Text »    PDF »
The Arabidopsis F-Box Protein CORONATINE INSENSITIVE1 Is Stabilized by SCFCOI1 and Degraded via the 26S Proteasome Pathway.
J. Yan, H. Li, S. Li, R. Yao, H. Deng, Q. Xie, and D. Xie (2013)
PLANT CELL 25, 486-498
   Abstract »    Full Text »    PDF »
Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling.
J. Withers, J. Yao, C. Mecey, G. A. Howe, M. Melotto, and S. Y. He (2012)
PNAS 109, 20148-20153
   Abstract »    Full Text »    PDF »
Involvement of OsJAZ8 in Jasmonate-Induced Resistance to Bacterial Blight in Rice.
S. Yamada, A. Kano, D. Tamaoki, A. Miyamoto, H. Shishido, S. Miyoshi, S. Taniguchi, K. Akimitsu, and K. Gomi (2012)
Plant Cell Physiol. 53, 2060-2072
   Abstract »    Full Text »    PDF »
Two Novel RING-Type Ubiquitin Ligases, RGLG3 and RGLG4, Are Essential for Jasmonate-Mediated Responses in Arabidopsis.
X. Zhang, Q. Wu, J. Ren, W. Qian, S. He, K. Huang, X. Yu, Y. Gao, P. Huang, and C. An (2012)
Plant Physiology 160, 808-822
   Abstract »    Full Text »    PDF »
MEDIATOR25 Acts as an Integrative Hub for the Regulation of Jasmonate-Responsive Gene Expression in Arabidopsis.
V. Cevik, B. N. Kidd, P. Zhang, C. Hill, S. Kiddle, K. J. Denby, E. B. Holub, D. M. Cahill, J. M. Manners, P. M. Schenk, et al. (2012)
Plant Physiology 160, 541-555
   Abstract »    Full Text »    PDF »
Canopy Light and Plant Health.
C. L. Ballare, C. A. Mazza, A. T. Austin, and R. Pierik (2012)
Plant Physiology 160, 145-155
   Full Text »    PDF »
The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interacting with the MYC2 and ABI5 Transcription Factors.
R. Chen, H. Jiang, L. Li, Q. Zhai, L. Qi, W. Zhou, X. Liu, H. Li, W. Zheng, J. Sun, et al. (2012)
PLANT CELL 24, 2898-2916
   Abstract »    Full Text »    PDF »
Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis.
L. Gutierrez, G. Mongelard, K. Flokova, D. I. Pacurar, O. Novak, P. Staswick, M. Kowalczyk, M. Pacurar, H. Demailly, G. Geiss, et al. (2012)
PLANT CELL 24, 2515-2527
   Abstract »    Full Text »    PDF »
NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants.
Y. Oh, I. T. Baldwin, and I. Galis (2012)
Plant Physiology 159, 769-788
   Abstract »    Full Text »    PDF »
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.
D.-L. Yang, J. Yao, C.-S. Mei, X.-H. Tong, L.-J. Zeng, Q. Li, L.-T. Xiao, T.-p. Sun, J. Li, X.-W. Deng, et al. (2012)
PNAS 109, E1192-E1200
   Abstract »    Full Text »    PDF »
Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense.
Y. Yan, S. Christensen, T. Isakeit, J. Engelberth, R. Meeley, A. Hayward, R. J. N. Emery, and M. V. Kolomiets (2012)
PLANT CELL 24, 1420-1436
   Abstract »    Full Text »    PDF »
Low Red/Far-Red Ratios Reduce Arabidopsis Resistance to Botrytis cinerea and Jasmonate Responses via a COI1-JAZ10-Dependent, Salicylic Acid-Independent Mechanism.
I. Cerrudo, M. M. Keller, M. D. Cargnel, P. V. Demkura, M. de Wit, M. S. Patitucci, R. Pierik, C. M. J. Pieterse, and C. L. Ballare (2012)
Plant Physiology 158, 2042-2052
   Abstract »    Full Text »    PDF »
Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1.
M. Brosche and J. Kangasjarvi (2012)
J. Exp. Bot. 63, 1849-1861
   Abstract »    Full Text »    PDF »
Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover.
T. Heitz, E. Widemann, R. Lugan, L. Miesch, P. Ullmann, L. Desaubry, E. Holder, B. Grausem, S. Kandel, M. Miesch, et al. (2012)
J. Biol. Chem. 287, 6296-6306
   Abstract »    Full Text »    PDF »
JAZ8 Lacks a Canonical Degron and Has an EAR Motif That Mediates Transcriptional Repression of Jasmonate Responses in Arabidopsis.
C. Shyu, P. Figueroa, C. L. DePew, T. F. Cooke, L. B. Sheard, J. E. Moreno, L. Katsir, N. Zheng, J. Browse, and G. A. Howe (2012)
PLANT CELL 24, 536-550
   Abstract »    Full Text »    PDF »
Tobacco Transcription Factors NtMYC2a and NtMYC2b Form Nuclear Complexes with the NtJAZ1 Repressor and Regulate Multiple Jasmonate-Inducible Steps in Nicotine Biosynthesis.
H.-B. Zhang, M. T. Bokowiec, P. J. Rushton, S.-C. Han, and M. P. Timko (2012)
Mol Plant 5, 73-84
   Abstract »    Full Text »    PDF »
Biosynthesis and Defensive Function of N{delta}-Acetylornithine, a Jasmonate-Induced Arabidopsis Metabolite.
A. M. Adio, C. L. Casteel, M. De Vos, J. H. Kim, V. Joshi, B. Li, C. Juery, J. Daron, D. J. Kliebenstein, and G. Jander (2011)
PLANT CELL 23, 3303-3318
   Abstract »    Full Text »    PDF »
The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis.
Q. Chen, J. Sun, Q. Zhai, W. Zhou, L. Qi, L. Xu, B. Wang, R. Chen, H. Jiang, J. Qi, et al. (2011)
PLANT CELL 23, 3335-3352
   Abstract »    Full Text »    PDF »
The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade.
L. Pauwels and A. Goossens (2011)
PLANT CELL 23, 3089-3100
   Abstract »    Full Text »    PDF »
Ectopic Expression of AtJMT in Nicotiana attenuata: Creating a Metabolic Sink Has Tissue-Specific Consequences for the Jasmonate Metabolic Network and Silences Downstream Gene Expression.
M. Stitz, K. Gase, I. T. Baldwin, and E. Gaquerel (2011)
Plant Physiology 157, 341-354
   Abstract »    Full Text »    PDF »
Jasmonate Controls Polypeptide Patterning in Undamaged Tissue in Wounded Arabidopsis Leaves.
A. Gfeller, K. Baerenfaller, J. Loscos, A. Chetelat, S. Baginsky, and E. E. Farmer (2011)
Plant Physiology 156, 1797-1807
   Abstract »    Full Text »    PDF »
Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis.
Z. Zhu, F. An, Y. Feng, P. Li, L. Xue, M. A, Z. Jiang, J.-M. Kim, T. K. To, W. Li, et al. (2011)
PNAS 108, 12539-12544
   Abstract »    Full Text »    PDF »
Intronic T-DNA Insertion Renders Arabidopsis opr3 a Conditional Jasmonic Acid-Producing Mutant.
E. W. Chehab, S. Kim, T. Savchenko, D. Kliebenstein, K. Dehesh, and J. Braam (2011)
Plant Physiology 156, 770-778
   Abstract »    Full Text »    PDF »
The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana.
T. Qi, S. Song, Q. Ren, D. Wu, H. Huang, Y. Chen, M. Fan, W. Peng, C. Ren, and D. Xie (2011)
PLANT CELL 23, 1795-1814
   Abstract »    Full Text »    PDF »
Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis.
Y. Niu, P. Figueroa, and J. Browse (2011)
J. Exp. Bot. 62, 2143-2154
   Abstract »    Full Text »    PDF »
The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses.
P. Fernandez-Calvo, A. Chini, G. Fernandez-Barbero, J.-M. Chico, S. Gimenez-Ibanez, J. Geerinck, D. Eeckhout, F. Schweizer, M. Godoy, J. M. Franco-Zorrilla, et al. (2011)
PLANT CELL 23, 701-715
   Abstract »    Full Text »    PDF »
New Insights into the Shikimate and Aromatic Amino Acids Biosynthesis Pathways in Plants.
V. Tzin and G. Galili (2010)
Mol Plant 3, 956-972
   Abstract »    Full Text »    PDF »
Ubiquitin Ligase-Coupled Receptors Extend Their Reach to Jasmonate.
G. A. Howe (2010)
Plant Physiology 154, 471-474
   Full Text »    PDF »
Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-acetic Acid-Amido Synthetase.
Q. Chen, C. S. Westfall, L. M. Hicks, S. Wang, and J. M. Jez (2010)
J. Biol. Chem. 285, 29780-29786
   Abstract »    Full Text »    PDF »
Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways.
A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han, L. Taconnat, P. Saindrenan, H. Gouia, E. Issakidis-Bourguet, J.-P. Renou, et al. (2010)
Plant Physiology 153, 1144-1160
   Abstract »    Full Text »    PDF »
Jasmonic Acid and Ethylene Modulate Local Responses to Wounding and Simulated Herbivory in Nicotiana attenuata Leaves.
N. Onkokesung, I. Galis, C. C. von Dahl, K. Matsuoka, H.-P. Saluz, and I. T. Baldwin (2010)
Plant Physiology 153, 785-798
   Abstract »    Full Text »    PDF »
Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability.
F. Robson, H. Okamoto, E. Patrick, S.-R. Harris, C. Wasternack, C. Brearley, and J. G. Turner (2010)
PLANT CELL 22, 1143-1160
   Abstract »    Full Text »    PDF »
Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves.
V. M. Rodriguez, A. Chetelat, P. Majcherczyk, and E. E. Farmer (2010)
Plant Physiology 152, 1335-1345
   Abstract »    Full Text »    PDF »
Arabidopsis Jasmonate Signaling Pathway.
A. Gfeller, R. Liechti, and E. E. Farmer (2010)
Science Signaling 3, cm4
   Abstract »    Full Text »    PDF »
Velocity Estimates for Signal Propagation Leading to Systemic Jasmonic Acid Accumulation in Wounded Arabidopsis.
G. Glauser, L. Dubugnon, S. A. R. Mousavi, S. Rudaz, J.-L. Wolfender, and E. E. Farmer (2009)
J. Biol. Chem. 284, 34506-34513
   Abstract »    Full Text »    PDF »
A Leaky Mutation in DWARF4 Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis.
C. Ren, C. Han, W. Peng, Y. Huang, Z. Peng, X. Xiong, Q. Zhu, B. Gao, and D. Xie (2009)
Plant Physiology 151, 1412-1420
   Abstract »    Full Text »    PDF »
Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin.
W. Grunewald, B. Vanholme, L. Pauwels, E. Plovie, D. Inze, G. Gheysen, and A. Goossens (2009)
EMBO Rep. 10, 923-928
   Abstract »    Full Text »    PDF »
The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor.
J. Yan, C. Zhang, M. Gu, Z. Bai, W. Zhang, T. Qi, Z. Cheng, W. Peng, H. Luo, F. Nan, et al. (2009)
PLANT CELL 21, 2220-2236
   Abstract »    Full Text »    PDF »
The Tryptophan Conjugates of Jasmonic and Indole-3-Acetic Acids Are Endogenous Auxin Inhibitors.
P. E. Staswick (2009)
Plant Physiology 150, 1310-1321
   Abstract »    Full Text »    PDF »
Arabidopsis GH3.12 (PBS3) Conjugates Amino Acids to 4-Substituted Benzoates and Is Inhibited by Salicylate.
R. A. Okrent, M. D. Brooks, and M. C. Wildermuth (2009)
J. Biol. Chem. 284, 9742-9754
   Abstract »    Full Text »    PDF »
Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity.
J. E. Moreno, Y. Tao, J. Chory, and C. L. Ballare (2009)
PNAS 106, 4935-4940
   Abstract »    Full Text »    PDF »
Jasmonate: Preventing the Maize Tassel from Getting in Touch with His Feminine Side.
J. Browse (2009)
Science Signaling 2, pe9
   Abstract »    Full Text »    PDF »
Indirect suppression of photosynthesis on individual leaves by arthropod herbivory.
P. D. Nabity, J. A. Zavala, and E. H. DeLucia (2009)
Ann. Bot. 103, 655-663
   Abstract »    Full Text »    PDF »
Detritivorous crustaceans become herbivores on jasmonate-deficient plants.
E. E. Farmer and L. Dubugnon (2009)
PNAS 106, 935-940
   Abstract »    Full Text »    PDF »
Thigmomorphogenesis: a complex plant response to mechano-stimulation.
E. W. Chehab, E. Eich, and J. Braam (2009)
J. Exp. Bot. 60, 43-56
   Abstract »    Full Text »    PDF »
A Critical Role for the TIFY Motif in Repression of Jasmonate Signaling by a Stabilized Splice Variant of the JASMONATE ZIM-Domain Protein JAZ10 in Arabidopsis.
H. S. Chung and G. A. Howe (2009)
PLANT CELL 21, 131-145
   Abstract »    Full Text »    PDF »
Plant hormone receptors: new perceptions.
A. K. Spartz and W. M. Gray (2008)
Genes & Dev. 22, 2139-2148
   Abstract »    Full Text »    PDF »
Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid.
C. Tretner, U. Huth, and B. Hause (2008)
J. Exp. Bot. 59, 2847-2856
   Abstract »    Full Text »    PDF »
Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes.
T. Shoji, T. Ogawa, and T. Hashimoto (2008)
Plant Cell Physiol. 49, 1003-1012
   Abstract »    Full Text »    PDF »
Spatial and Temporal Dynamics of Jasmonate Synthesis and Accumulation in Arabidopsis in Response to Wounding.
G. Glauser, E. Grata, L. Dubugnon, S. Rudaz, E. E. Farmer, and J.-L. Wolfender (2008)
J. Biol. Chem. 283, 16400-16407
   Abstract »    Full Text »    PDF »
COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine.
L. Katsir, A. L. Schilmiller, P. E. Staswick, S. Y. He, and G. A. Howe (2008)
PNAS 105, 7100-7105
   Abstract »    Full Text »    PDF »
Jasmonate Signaling: Toward an Integrated View.
K. Kazan and J. M. Manners (2008)
Plant Physiology 146, 1459-1468
   Full Text »    PDF »
New Weapons and a Rapid Response against Insect Attack.
J. Browse and G. A. Howe (2008)
Plant Physiology 146, 832-838
   Full Text »    PDF »
General Detoxification and Stress Responses Are Mediated by Oxidized Lipids through TGA Transcription Factors in Arabidopsis.
S. Mueller, B. Hilbert, K. Dueckershoff, T. Roitsch, M. Krischke, M. J. Mueller, and S. Berger (2008)
PLANT CELL 20, 768-785
   Abstract »    Full Text »    PDF »
Regulation and Function of Arabidopsis JASMONATE ZIM-Domain Genes in Response to Wounding and Herbivory.
H. S. Chung, A. J.K. Koo, X. Gao, S. Jayanty, B. Thines, A. D. Jones, and G. A. Howe (2008)
Plant Physiology 146, 952-964
   Abstract »    Full Text »    PDF »
The JAZ Proteins Link Jasmonate Perception with Transcriptional Changes.
A. Santner and M. Estelle (2007)
PLANT CELL 19, 3839-3842
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882