Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Plant Physiology 139 (3): 1268-1283

Copyright © 2005 by the American Society of Plant Physiologists.


DEVELOPMENT AND HORMONE ACTION

12-Oxo-Phytodienoic Acid Triggers Expression of a Distinct Set of Genes and Plays a Role in Wound-Induced Gene Expression in Arabidopsis1,[w]

Nozomi Taki, Yuko Sasaki-Sekimoto, Takeshi Obayashi, Akihiro Kikuta, Koichi Kobayashi, Takayuki Ainai, Kaori Yagi, Nozomu Sakurai, Hideyuki Suzuki, Tatsuru Masuda, Ken-ichiro Takamiya, Daisuke Shibata, Yuichi Kobayashi, and Hiroyuki Ohta*

Department of Bioscience, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8501, Japan (N.T., Y.S.-S., T.O., A.K., K.K., K.-i.T.); Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8501, Japan (T.A., K.Y., Y.K.); Kazusa DNA Research Institute, 2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0812, Japan (N.S., H.S., D.S.); Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3–8–1 Komaba, Meguro, Tokyo 153–8902, Japan (T.M.); and Department of Bioscience, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, and Research Center for the Evolving Earth and Planets, 4259 Nagatsuta, Midori-ku, Yokohama 226–8501, Japan (H.O.)

Abstract: Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively known as JAs, regulate diverse physiological processes in plants, including the response to wounding. Recent reports suggest that a cyclopentenone precursor of JA, 12-oxo-phytodienoic acid (OPDA), can also induce gene expression. However, little is known about the physiological significance of OPDA-dependent gene expression. We used microarray analysis of approximately 21,500 Arabidopsis (Arabidopsis thaliana) genes to compare responses to JA, MeJA, and OPDA treatment. Although many genes responded identically to both OPDA and JAs, we identified a set of genes (OPDA-specific response genes [ORGs]) that specifically responded to OPDA but not to JAs. ORGs primarily encoded signaling components, transcription factors, and stress response-related genes. One-half of the ORGs were induced by wounding. Analysis using mutants deficient in the biosynthesis of JAs revealed that OPDA functions as a signaling molecule in the wounding response. Unlike signaling via JAs, OPDA signaling was CORONATINE INSENSITIVE 1 independent. These results indicate that an OPDA signaling pathway functions independently of JA/MeJA signaling and is required for the wounding response in Arabidopsis.


1 This work was supported in part by the New Energy and Industrial Technology Development Organization, Japan (performed as part of the project Development of Fundamental Technologies for Controlling the Production of Industrial Materials by Plants).

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Hiroyuki Ohta (hohta@bio.titech.ac.jp).

[w] The online version of this article contains Web-only data.

Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/doi/10.1104/pp.105.067058.

* Corresponding author; e-mail hohta{at}bio.titech.ac.jp; fax 81–45–924–5823.

Received for publication June 11, 2005. Revision received August 31, 2005. Accepted for publication September 5, 2005.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism.
M. Tikkanen, P. J. Gollan, N. R. Mekala, J. Isojarvi, and E.-M. Aro (2014)
Phil Trans R Soc B 369, 20130229
   Abstract »    Full Text »    PDF »
Functional Convergence of Oxylipin and Abscisic Acid Pathways Controls Stomatal Closure in Response to Drought.
T. Savchenko, V. A. Kolla, C.-Q. Wang, Z. Nasafi, D. R. Hicks, B. Phadungchob, W. E. Chehab, F. Brandizzi, J. Froehlich, and K. Dehesh (2014)
Plant Physiology 164, 1151-1160
   Abstract »    Full Text »    PDF »
DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory.
Z. Lan, S. Krosse, P. Achard, N. M. van Dam, and J. C. Bede (2014)
J. Exp. Bot. 65, 571-583
   Abstract »    Full Text »    PDF »
Pathogen-Triggered Ethylene Signaling Mediates Systemic-Induced Susceptibility to Herbivory in Arabidopsis.
S. C. Groen, N. K. Whiteman, A. K. Bahrami, A. M. Wilczek, J. Cui, J. A. Russell, A. Cibrian-Jaramillo, I. A. Butler, J. D. Rana, G.-H. Huang, et al. (2013)
PLANT CELL 25, 4755-4766
   Abstract »    Full Text »    PDF »
A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation.
Y. Kwon, J. H. Kim, H. N. Nguyen, Y. Jikumaru, Y. Kamiya, S.-W. Hong, and H. Lee (2013)
J. Exp. Bot. 64, 3911-3922
   Abstract »    Full Text »    PDF »
Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis.
Y. Sasaki-Sekimoto, Y. Jikumaru, T. Obayashi, H. Saito, S. Masuda, Y. Kamiya, H. Ohta, and K. Shirasu (2013)
Plant Physiology 163, 291-304
   Abstract »    Full Text »    PDF »
Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism.
S. J. Cookson, M. J. Clemente Moreno, C. Hevin, L. Z. Nyamba Mendome, S. Delrot, C. Trossat-Magnin, and N. Ollat (2013)
J. Exp. Bot. 64, 2997-3008
   Abstract »    Full Text »    PDF »
12-oxo-phytodienoic acid interaction with cyclophilin CYP20-3 is a benchmark for understanding retrograde signaling in plants.
S. Kopriva (2013)
PNAS 110, 9197-9198
   Full Text »    PDF »
Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.
S.-W. Park, W. Li, A. Viehhauser, B. He, S. Kim, A. K. Nilsson, M. X. Andersson, J. D. Kittle, M. M. R. Ambavaram, S. Luan, et al. (2013)
PNAS 110, 9559-9564
   Abstract »    Full Text »    PDF »
Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.
C. Wasternack and B. Hause (2013)
Ann. Bot. 111, 1021-1058
   Abstract »    Full Text »    PDF »
TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins.
H. U. Stotz, S. Mueller, M. Zoeller, M. J. Mueller, and S. Berger (2013)
J. Exp. Bot. 64, 963-975
   Abstract »    Full Text »    PDF »
SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii.
B. B. Fischer, H. K. Ledford, S. Wakao, S. G. Huang, D. Casero, M. Pellegrini, S. S. Merchant, A. Koller, R. I. L. Eggen, and K. K. Niyogi (2012)
PNAS 109, E1302-E1311
   Abstract »    Full Text »    PDF »
Role of cis-12-Oxo-Phytodienoic Acid in Tomato Embryo Development.
S. Goetz, A. Hellwege, I. Stenzel, C. Kutter, V. Hauptmann, S. Forner, B. McCaig, G. Hause, O. Miersch, C. Wasternack, et al. (2012)
Plant Physiology 158, 1715-1727
   Abstract »    Full Text »    PDF »
Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses.
H. S. Vu, P. Tamura, N. A. Galeva, R. Chaturvedi, M. R. Roth, T. D. Williams, X. Wang, J. Shah, and R. Welti (2012)
Plant Physiology 158, 324-339
   Abstract »    Full Text »    PDF »
Synthetic molecular mimics of naturally occurring cyclopentenones exhibit antifungal activity towards pathogenic fungi.
Y. Zhou, J. Behrendt, A. J. Sutherland, and G. Griffiths (2011)
Microbiology 157, 3435-3445
   Abstract »    Full Text »    PDF »
Jasmonate-Dependent and COI1-Independent Defense Responses Against Sclerotinia sclerotiorum in Arabidopsis thaliana: Auxin is Part of COI1-Independent Defense Signaling.
H. U. Stotz, Y. Jikumaru, Y. Shimada, E. Sasaki, N. Stingl, M. J. Mueller, and Y. Kamiya (2011)
Plant Cell Physiol. 52, 1941-1956
   Abstract »    Full Text »    PDF »
The interplay between light and jasmonate signalling during defence and development.
K. Kazan and J. M. Manners (2011)
J. Exp. Bot. 62, 4087-4100
   Abstract »    Full Text »    PDF »
Lipase Activity in Insect Oral Secretions Mediates Defense Responses in Arabidopsis.
M. Schafer, C. Fischer, S. Meldau, E. Seebald, R. Oelmuller, and I. T. Baldwin (2011)
Plant Physiology 156, 1520-1534
   Abstract »    Full Text »    PDF »
Intronic T-DNA Insertion Renders Arabidopsis opr3 a Conditional Jasmonic Acid-Producing Mutant.
E. W. Chehab, S. Kim, T. Savchenko, D. Kliebenstein, K. Dehesh, and J. Braam (2011)
Plant Physiology 156, 770-778
   Abstract »    Full Text »    PDF »
Pithy Protection: Nicotiana attenuata's Jasmonic Acid-Mediated Defenses Are Required to Resist Stem-Boring Weevil Larvae.
C. Diezel, D. Kessler, and I. T. Baldwin (2011)
Plant Physiology 155, 1936-1946
   Abstract »    Full Text »    PDF »
Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.
E. A. Schmelz, F. Kaplan, A. Huffaker, N. J. Dafoe, M. M. Vaughan, X. Ni, J. R. Rocca, H. T. Alborn, and P. E. Teal (2011)
PNAS 108, 5455-5460
   Abstract »    Full Text »    PDF »
12-Hydroxyjasmonic Acid Glucoside Is a COI1-JAZ-Independent Activator of Leaf-Closing Movement in Samanea saman.
Y. Nakamura, A. Mithofer, E. Kombrink, W. Boland, S. Hamamoto, N. Uozumi, K. Tohma, and M. Ueda (2011)
Plant Physiology 155, 1226-1236
   Abstract »    Full Text »    PDF »
12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis.
A. Dave, M. L. Hernandez, Z. He, V. M. E. Andriotis, F. E. Vaistij, T. R. Larson, and I. A. Graham (2011)
PLANT CELL 23, 583-599
   Abstract »    Full Text »    PDF »
12-Oxo-Phytodienoic Acid-Glutathione Conjugate is Transported into the Vacuole in Arabidopsis.
N. Ohkama-Ohtsu, Y. Sasaki-Sekimoto, A. Oikawa, Y. Jikumaru, S. Shinoda, E. Inoue, Y. Kamide, T. Yokoyama, M. Y. Hirai, K. Shirasu, et al. (2011)
Plant Cell Physiol. 52, 205-209
   Abstract »    Full Text »    PDF »
Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses.
F. Bedon, C. Bomal, S. Caron, C. Levasseur, B. Boyle, S. D. Mansfield, A. Schmidt, J. Gershenzon, J. Grima-Pettenati, A. Seguin, et al. (2010)
J. Exp. Bot. 61, 3847-3864
   Abstract »    Full Text »    PDF »
Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways.
A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han, L. Taconnat, P. Saindrenan, H. Gouia, E. Issakidis-Bourguet, J.-P. Renou, et al. (2010)
Plant Physiology 153, 1144-1160
   Abstract »    Full Text »    PDF »
Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway.
J. A. Lopez-Raez, A. Verhage, I. Fernandez, J. M. Garcia, C. Azcon-Aguilar, V. Flors, and M. J. Pozo (2010)
J. Exp. Bot. 61, 2589-2601
   Abstract »    Full Text »    PDF »
Detoxification without Intoxication: Herbicide Safeners Activate Plant Defense Gene Expression.
D. E. Riechers, K. Kreuz, and Q. Zhang (2010)
Plant Physiology 153, 3-13
   Full Text »    PDF »
The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase.
P. Dabrowska, D. Freitak, H. Vogel, D. G. Heckel, and W. Boland (2009)
PNAS 106, 16304-16309
   Abstract »    Full Text »    PDF »
Emerging complexity: jasmonate-induced volatiles affect parasitoid choice.
C. Wasternack and B. Hause (2009)
J. Exp. Bot. 60, 2451-2453
   Full Text »    PDF »
Spodoptera littoralis-Induced Lectin Expression in Tobacco.
G. Vandenborre, O. Miersch, B. Hause, G. Smagghe, C. Wasternack, and E. J.M. Van Damme (2009)
Plant Cell Physiol. 50, 1142-1155
   Abstract »    Full Text »    PDF »
Hormone (Dis)harmony Moulds Plant Health and Disease.
M. R. Grant and J. D. G. Jones (2009)
Science 324, 750-752
   Abstract »    Full Text »    PDF »
Jasmonate Perception Regulates Jasmonate Biosynthesis and JA-Ile Metabolism: The Case of COI1 in Nicotiana attenuata.
A. Paschold, G. Bonaventure, M. R. Kant, and I. T. Baldwin (2008)
Plant Cell Physiol. 49, 1165-1175
   Abstract »    Full Text »    PDF »
Jasmonate-Induced Nicotine Formation in Tobacco is Mediated by Tobacco COI1 and JAZ Genes.
T. Shoji, T. Ogawa, and T. Hashimoto (2008)
Plant Cell Physiol. 49, 1003-1012
   Abstract »    Full Text »    PDF »
Induction of the Arabidopsis PHO1;H10 Gene by 12-Oxo-Phytodienoic Acid But Not Jasmonic Acid via a CORONATINE INSENSITIVE1-Dependent Pathway.
C. Ribot, C. Zimmerli, E. E. Farmer, P. Reymond, and Y. Poirier (2008)
Plant Physiology 147, 696-706
   Abstract »    Full Text »    PDF »
Activation of Defense Response Pathways by OGs and Flg22 Elicitors in Arabidopsis Seedlings.
C. Denoux, R. Galletti, N. Mammarella, S. Gopalan, D. Werck, G. De Lorenzo, S. Ferrari, F. M. Ausubel, and J. Dewdney (2008)
Mol Plant
   Abstract »    Full Text »    PDF »
Jasmonate Signaling: Toward an Integrated View.
K. Kazan and J. M. Manners (2008)
Plant Physiology 146, 1459-1468
   Full Text »    PDF »
Reduced V-ATPase Activity in the trans-Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in Arabidopsis.
A. Brux, T.-Y. Liu, M. Krebs, Y.-D. Stierhof, J. U. Lohmann, O. Miersch, C. Wasternack, and K. Schumacher (2008)
PLANT CELL 20, 1088-1100
   Abstract »    Full Text »    PDF »
General Detoxification and Stress Responses Are Mediated by Oxidized Lipids through TGA Transcription Factors in Arabidopsis.
S. Mueller, B. Hilbert, K. Dueckershoff, T. Roitsch, M. Krischke, M. J. Mueller, and S. Berger (2008)
PLANT CELL 20, 768-785
   Abstract »    Full Text »    PDF »
Oxylipin Signaling in Plant Stress Responses.
N. A. Eckardt (2008)
PLANT CELL 20, 495-497
   Full Text »    PDF »
Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana.
L. Kienow, K. Schneider, M. Bartsch, H.-P. Stuible, H. Weng, O. Miersch, C. Wasternack, and E. Kombrink (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
UV-B Signaling Pathways with Different Fluence-Rate Response Profiles Are Distinguished in Mature Arabidopsis Leaf Tissue by Requirement for UVR8, HY5, and HYH.
B. A. Brown and G. I. Jenkins (2008)
Plant Physiology 146, 576-588
   Abstract »    Full Text »    PDF »
Function of Jasmonate in Response and Tolerance of Arabidopsis to Thrip Feeding.
H. Abe, J. Ohnishi, M. Narusaka, S. Seo, Y. Narusaka, S. Tsuda, and M. Kobayashi (2008)
Plant Cell Physiol. 49, 68-80
   Abstract »    Full Text »    PDF »
The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis.
G. Bonaventure, A. Gfeller, V. M. Rodriguez, F. Armand, and E. E. Farmer (2007)
Plant Cell Physiol. 48, 1775-1789
   Abstract »    Full Text »    PDF »
Oxo-Phytodienoic Acid-Containing Galactolipids in Arabidopsis: Jasmonate Signaling Dependence.
O. Kourtchenko, M. X. Andersson, M. Hamberg, A. Brunnstrom, C. Gobel, K. L. McPhail, W. H. Gerwick, I. Feussner, and M. Ellerstrom (2007)
Plant Physiology 145, 1658-1669
   Abstract »    Full Text »    PDF »
Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development.
C. Wasternack (2007)
Ann. Bot. 100, 681-697
   Abstract »    Full Text »    PDF »
Immunomodulation of jasmonate to manipulate the wound response.
P. ten Hoopen, A. Hunger, A. Muller, B. Hause, R. Kramell, C. Wasternack, S. Rosahl, and U. Conrad (2007)
J. Exp. Bot. 58, 2525-2535
   Abstract »    Full Text »    PDF »
Induction of Isoforms of Tetrapyrrole Biosynthetic Enzymes, AtHEMA2 and AtFC1, under Stress Conditions and Their Physiological Functions in Arabidopsis.
S. Nagai, M. Koide, S. Takahashi, A. Kikuta, M. Aono, Y. Sasaki-Sekimoto, H. Ohta, K.-i. Takamiya, and T. Masuda (2007)
Plant Physiology 144, 1039-1051
   Abstract »    Full Text »    PDF »
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
M. Y. Hirai, K. Sugiyama, Y. Sawada, T. Tohge, T. Obayashi, A. Suzuki, R. Araki, N. Sakurai, H. Suzuki, K. Aoki, et al. (2007)
PNAS 104, 6478-6483
   Abstract »    Full Text »    PDF »
Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana.
S. Berger, Z. Benediktyova, K. Matous, K. Bonfig, M. J. Mueller, L. Nedbal, and T. Roitsch (2007)
J. Exp. Bot. 58, 797-806
   Abstract »    Full Text »    PDF »
Functional Diversification of Acyl-Coenzyme A Oxidases in Jasmonic Acid Biosynthesis and Action.
A. L. Schilmiller, A. J.K. Koo, and G. A. Howe (2007)
Plant Physiology 143, 812-824
   Abstract »    Full Text »    PDF »
The Association Among Gene Expression Responses to Nine Abiotic Stress Treatments in Arabidopsis thaliana.
W. R. Swindell (2006)
Genetics 174, 1811-1824
   Abstract »    Full Text »    PDF »
Identification of a Peroxisomal Acyl-activating Enzyme Involved in the Biosynthesis of Jasmonic Acid in Arabidopsis.
A. J. K. Koo, H. S. Chung, Y. Kobayashi, and G. A. Howe (2006)
J. Biol. Chem. 281, 33511-33520
   Abstract »    Full Text »    PDF »
Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate.
J. Collen, C. Herve, I. Guisle-Marsollier, J. J. Leger, and C. Boyen (2006)
J. Exp. Bot. 57, 3869-3881
   Abstract »    Full Text »    PDF »
The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana.
N. Journot-Catalino, I. E. Somssich, D. Roby, and T. Kroj (2006)
PLANT CELL 18, 3289-3302
   Abstract »    Full Text »    PDF »
Hormonal and Stress Induction of the Gene Encoding Common Bean Acetyl-Coenzyme A Carboxylase.
R. E. Figueroa-Balderas, B. Garcia-Ponce, and M. Rocha-Sosa (2006)
Plant Physiology 142, 609-619
   Abstract »    Full Text »    PDF »
Crystal structure of 12-oxophytodienoate reductase 3 from tomato: Self-inhibition by dimerization.
C. Breithaupt, R. Kurzbauer, H. Lilie, A. Schaller, J. Strassner, R. Huber, P. Macheroux, and T. Clausen (2006)
PNAS 103, 14337-14342
   Abstract »    Full Text »    PDF »
Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves.
C. M. Buseman, P. Tamura, A. A. Sparks, E. J. Baughman, S. Maatta, J. Zhao, M. R. Roth, S. W. Esch, J. Shah, T. D. Williams, et al. (2006)
Plant Physiology 142, 28-39
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882