Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 100 (1): 74-79

Copyright © 2003 by the National Academy of Sciences.

From the Cover


BIOLOGICAL SCIENCES / BIOCHEMISTRY

Structural basis and prediction of substrate specificity in protein serine/threonine kinases

Ross I. Brinkworth, Robert A. Breinl, and Bostjan Kobe*

Department of Biochemistry and Molecular Biology and Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia

Received for publication July 16, 2002.

Abstract: The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.


* To whom correspondence should be addressed. E-mail: b.kobe{at}mailbox.uq.edu.au.

Edited by Susan S. Taylor, University of California at San Diego, La Jolla, CA, and approved November 18, 2002

This paper was submitted directly (Track II) to the PNAS office.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dynamic Regulation of the Translation Initiation Helicase Complex by Mitogenic Signal Transduction to Eukaryotic Translation Initiation Factor 4G.
M. I. Dobrikov, E. Y. Dobrikova, and M. Gromeier (2013)
Mol. Cell. Biol. 33, 937-946
   Abstract »    Full Text »    PDF »
Computational prediction of eukaryotic phosphorylation sites.
B. Trost and A. Kusalik (2011)
Bioinformatics 27, 2927-2935
   Abstract »    Full Text »    PDF »
Phospho3D 2.0: an enhanced database of three-dimensional structures of phosphorylation sites.
A. Zanzoni, D. Carbajo, F. Diella, P. F. Gherardini, A. Tramontano, M. Helmer-Citterich, and A. Via (2011)
Nucleic Acids Res. 39, D268-D271
   Abstract »    Full Text »    PDF »
Deciphering Protein Kinase Specificity Through Large-Scale Analysis of Yeast Phosphorylation Site Motifs.
J. Mok, P. M. Kim, H. Y. K. Lam, S. Piccirillo, X. Zhou, G. R. Jeschke, D. L. Sheridan, S. A. Parker, V. Desai, M. Jwa, et al. (2010)
Science Signaling 3, ra12
   Abstract »    Full Text »    PDF »
Identification of substrates for Ser/Thr kinases using residue-based statistical pair potentials.
N. Kumar and D. Mohanty (2010)
Bioinformatics 26, 189-197
   Abstract »    Full Text »    PDF »
AMPK in Health and Disease.
G. R. Steinberg and B. E. Kemp (2009)
Physiol Rev 89, 1025-1078
   Abstract »    Full Text »    PDF »
Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets.
D. Schwartz, M. F. Chou, and G. M. Church (2009)
Mol. Cell. Proteomics 8, 365-379
   Abstract »    Full Text »    PDF »
Discovery of phosphorylation motif mixtures in phosphoproteomics data.
A. Ritz, G. Shakhnarovich, A. R. Salomon, and B. J. Raphael (2009)
Bioinformatics 25, 14-21
   Abstract »    Full Text »    PDF »
AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
N. Dzamko, J. D. Schertzer, J. G. Ryall, R. Steel, S. L. Macaulay, S. Wee, Z.-P. Chen, B. J. Michell, J. S. Oakhill, M. J. Watt, et al. (2008)
J. Physiol. 586, 5819-5831
   Abstract »    Full Text »    PDF »
Soybean Nodule Autoregulation Receptor Kinase Phosphorylates Two Kinase-associated Protein Phosphatases in Vitro.
A. Miyahara, T. A. Hirani, M. Oakes, A. Kereszt, B. Kobe, M. A. Djordjevic, and P. M. Gresshoff (2008)
J. Biol. Chem. 283, 25381-25391
   Abstract »    Full Text »    PDF »
GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy.
Y. Xue, J. Ren, X. Gao, C. Jin, L. Wen, and X. Yao (2008)
Mol. Cell. Proteomics 7, 1598-1608
   Abstract »    Full Text »    PDF »
The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information.
N. F. W. Saunders and B. Kobe (2008)
Nucleic Acids Res. 36, W286-W290
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor Receptor 2 Phosphorylation on Serine 779 Couples to 14-3-3 and Regulates Cell Survival and Proliferation.
A. Lonic, E. F. Barry, C. Quach, B. Kobe, N. Saunders, and M. A. Guthridge (2008)
Mol. Cell. Biol. 28, 3372-3385
   Abstract »    Full Text »    PDF »
Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection.
J. Wan, S. Kang, C. Tang, J. Yan, Y. Ren, J. Liu, X. Gao, A. Banerjee, L. B. M. Ellis, and T. Li (2008)
Nucleic Acids Res. 36, e22
   Abstract »    Full Text »    PDF »
MODPROPEP: a program for knowledge-based modeling of protein-peptide complexes.
N. Kumar and D. Mohanty (2007)
Nucleic Acids Res. 35, W549-W555
   Abstract »    Full Text »    PDF »
Nonnatural protein-protein interaction-pair design by key residues grafting.
S. Liu, S. Liu, X. Zhu, H. Liang, A. Cao, Z. Chang, and L. Lai (2007)
PNAS 104, 5330-5335
   Abstract »    Full Text »    PDF »
Calcium-Dependent Protein Kinases Regulate the Production of Reactive Oxygen Species by Potato NADPH Oxidase.
M. Kobayashi, I. Ohura, K. Kawakita, N. Yokota, M. Fujiwara, K. Shimamoto, N. Doke, and H. Yoshioka (2007)
PLANT CELL 19, 1065-1080
   Abstract »    Full Text »    PDF »
Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases.
M. A. Bogoyevitch and B. Kobe (2006)
Microbiol. Mol. Biol. Rev. 70, 1061-1095
   Abstract »    Full Text »    PDF »
Identification of Novel Glycogen Synthase Kinase-3beta Substrate-interacting Residues Suggests a Common Mechanism for Substrate Recognition.
R. Ilouz, N. Kowalsman, M. Eisenstein, and H. Eldar-Finkelman (2006)
J. Biol. Chem. 281, 30621-30630
   Abstract »    Full Text »    PDF »
Scoring of predicted GRK2 phosphorylation sites in Nedd4-2.
J. W. Arthur, A. Sanchez-Perez, and D. I. Cook (2006)
Bioinformatics 22, 2192-2195
   Abstract »    Full Text »    PDF »
Induction of Apoptosis by the Ste20-like Kinase SLK, a Germinal Center Kinase That Activates Apoptosis Signal-regulating Kinase and p38.
W. Hao, T. Takano, J. Guillemette, J. Papillon, G. Ren, and A. V. Cybulsky (2006)
J. Biol. Chem. 281, 3075-3084
   Abstract »    Full Text »    PDF »
A Single Pair of Acidic Residues in the Kinase Major Groove Mediates Strong Substrate Preference for P-2 or P-5 Arginine in the AGC, CAMK, and STE Kinase Families.
G. Zhu, K. Fujii, Y. Liu, V. Codrea, J. Herrero, and S. Shaw (2005)
J. Biol. Chem. 280, 36372-36379
   Abstract »    Full Text »    PDF »
Conformational dependence of a protein kinase phosphate transfer reaction.
G. Henkelman, M. X. LaBute, C.-S. Tung, P. W. Fenimore, and B. H. McMahon (2005)
PNAS 102, 15347-15351
   Abstract »    Full Text »    PDF »
Apoptin Nuclear Accumulation Is Modulated by a CRM1-Recognized Nuclear Export Signal that Is Active in Normal but not in Tumor Cells.
I. K.H. Poon, C. Oro, M. M. Dias, J. Zhang, and D. A. Jans (2005)
Cancer Res. 65, 7059-7064
   Abstract »    Full Text »    PDF »
Active Ca2+/Calmodulin-Dependent Protein Kinase II{gamma}B Impairs Positive Selection of T Cells by Modulating TCR Signaling.
M. A. McGargill, L. L. Sharp, J. D. Bui, S. M. Hedrick, and S. Calbo (2005)
J. Immunol. 175, 656-664
   Abstract »    Full Text »    PDF »
GPS: a comprehensive www server for phosphorylation sites prediction.
Y. Xue, F. Zhou, M. Zhu, K. Ahmed, G. Chen, and X. Yao (2005)
Nucleic Acids Res. 33, W184-W187
   Abstract »    Full Text »    PDF »
Phospho-Pivot Modeling Predicts Specific Interactions of Protein Phosphatase-1 with a Phospho-Inhibitor Protein CPI-17.
F. Matsuzawa, S.-i. Aikawa, S.-y. Ohki, and M. Eto (2005)
J. Biochem. 137, 633-641
   Abstract »    Full Text »    PDF »
Identification and Gene Expression Analysis of a Large Family of Transmembrane Kinases Related to the Gal/GalNAc Lectin in Entamoeba histolytica.
D. L. Beck, D. R. Boettner, B. Dragulev, K. Ready, T. Nozaki, and W. A. Petri Jr. (2005)
Eukaryot. Cell 4, 722-732
   Abstract »    Full Text »    PDF »
Biochemical Characterization of the Tobacco 42-kD Protein Kinase Activated by Osmotic Stress.
A. Kelner, I. Pekala, S. Kaczanowski, G. Muszynska, D. G. Hardie, and G. Dobrowolska (2004)
Plant Physiology 136, 3255-3265
   Abstract »    Full Text »    PDF »
Kinase peptide specificity: Improved determination and relevance to protein phosphorylation.
K. Fujii, G. Zhu, Y. Liu, J. Hallam, L. Chen, J. Herrero, and S. Shaw (2004)
PNAS 101, 13744-13749
   Abstract »    Full Text »    PDF »
The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ channels.
A. Dinudom, A. B. Fotia, R. J. Lefkowitz, J. A. Young, S. Kumar, and D. I. Cook (2004)
PNAS 101, 11886-11890
   Abstract »    Full Text »    PDF »
Characterization of Cyclin L2, a Novel Cyclin with an Arginine/Serine-rich Domain: PHOSPHORYLATION BY DYRK1A AND COLOCALIZATION WITH SPLICING FACTORS.
K. de Graaf, P. Hekerman, O. Spelten, A. Herrmann, L. C. Packman, K. Bussow, G. Muller-Newen, and W. Becker (2004)
J. Biol. Chem. 279, 4612-4624
   Abstract »    Full Text »    PDF »
The Structural Evolution of a P2Y-like G-protein-coupled Receptor.
A. Schulz and T. Schoneberg (2003)
J. Biol. Chem. 278, 35531-35541
   Abstract »    Full Text »    PDF »
Structural Basis for the Specificity of Bipartite Nuclear Localization Sequence Binding by Importin-{alpha}.
M. R. M. Fontes, T. Teh, D. Jans, R. I. Brinkworth, and B. Kobe (2003)
J. Biol. Chem. 278, 27981-27987
   Abstract »    Full Text »    PDF »
CRP: Cleavage of Radiolabeled Phosphoproteins.
A. J. Mackey, T. A.J. Haystead, and W. R. Pearson (2003)
Nucleic Acids Res. 31, 3859-3861
   Abstract »    Full Text »    PDF »
Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases.
L. Li, E. I. Shakhnovich, and L. A. Mirny (2003)
PNAS 100, 4463-4468
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882