Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 100 (14): 8258-8263

Copyright © 2003 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas

Robson A. S. Santos*, Ana C. Simoes e Silva*, Christine Maric{dagger}, Denise M. R. Silva*, Raquel Pillar Machado*, Insa de Buhr{ddagger}, Silvia Heringer-Walther{ddagger}, Sergio Veloso B. Pinheiro*, Myriam Teresa Lopes*, Michael Bader§, Elizabeth P. Mendes*, Virgina Soares Lemos*, Maria Jose Campagnole-Santos*, Heinz-Peter Schultheiss{ddagger}, Robert Speth ,||, and Thomas Walther {ddagger},**

*Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, 31270, Minas Gerais, Brazil; {dagger}Department of Medicine, Georgetown University, Washington, DC 20057; {ddagger}Department of Cardiology and Pneumology, University Hospital Benjamin Franklin, Free University, 12200 Berlin, Germany; §Max Delbrück Center, 13125 Berlin, Germany; and Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164-6520

Accepted for publication May 13, 2003.

Received for publication July 30, 2002.

Abstract: The renin–angiotensin system plays a critical role in blood pressure control and body fluid and electrolyte homeostasis. Besides angiotensin (Ang) II, other Ang peptides, such as Ang III [Ang-(2–8)], Ang IV [Ang-(3–8)], and Ang-(1–7) may also have important biological activities. Ang-(1–7) has become an angiotensin of interest in the past few years, because its cardiovascular and baroreflex actions counteract those of Ang II. Unique angiotensin-binding sites specific for this heptapeptide and studies with a selective Ang-(1–7) antagonist indicated the existence of a distinct Ang-(1–7) receptor. We demonstrate that genetic deletion of the G protein-coupled receptor encoded by the Mas protooncogene abolishes the binding of Ang-(1–7) to mouse kidneys. Accordingly, Mas-deficient mice completely lack the antidiuretic action of Ang-(1–7) after an acute water load. Ang-(1–7) binds to Mas-transfected cells and elicits arachidonic acid release. Furthermore, Mas-deficient aortas lose their Ang-(1–7)-induced relaxation response. Collectively, these findings identify Mas as a functional receptor for Ang-(1–7) and provide a clear molecular basis for the physiological actions of this biologically active peptide.

Key Words: binding • Mas protooncogene • renin angiotensin system


** To whom correspondence should be addressed at: Benjamin Franklin Medical Center, Department of Cardiology and Pneumology, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. E-mail: thomas.walther{at}ukbf.fu-berlin.de.

|| Present address: Department of Pharmacology, School of Pharmacy, University of Mississippi, University, MS 38677-1848.

Edited by Richard P. Lifton, Yale University School of Medicine, New Haven, CT

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: Ang, angiotensin; AVP, arginine-vasopressin; AA, arachidonic acid; CHO, Chinese hamster ovary.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Activation of angiotensin-converting enzyme 2 improves cardiac electrical changes in ventricular repolarization in streptozotocin-induced hyperglycaemic rats.
D. C. O. Coutinho, G. Monnerat-Cahli, A. J. Ferreira, and E. Medei (2014)
Europace
   Abstract »    Full Text »    PDF »
Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-{beta} signalling.
M. J. Acuna, P. Pessina, H. Olguin, D. Cabrera, C. P. Vio, M. Bader, P. Munoz-Canoves, R. A. Santos, C. Cabello-Verrugio, and E. Brandan (2014)
Hum. Mol. Genet. 23, 1237-1249
   Abstract »    Full Text »    PDF »
Angiotensin 1-7 Ameliorates Diabetic Cardiomyopathy and Diastolic Dysfunction in db/db Mice by Reducing Lipotoxicity and Inflammation.
J. Mori, V. B. Patel, O. Abo Alrob, R. Basu, T. Altamimi, J. DesAulniers, C. S. Wagg, Z. Kassiri, G. D. Lopaschuk, and G. Y. Oudit (2014)
Circ Heart Fail 7, 327-339
   Abstract »    Full Text »    PDF »
Heat Shock Prevents Insulin Resistance-Induced Vascular Complications by Augmenting Angiotensin-(1-7) Signaling.
P. A. Karpe and K. Tikoo (2014)
Diabetes 63, 1124-1139
   Abstract »    Full Text »    PDF »
TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein.
A. Heurich, H. Hofmann-Winkler, S. Gierer, T. Liepold, O. Jahn, and S. Pohlmann (2014)
J. Virol. 88, 1293-1307
   Abstract »    Full Text »    PDF »
Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy.
E. R. Lumbers and K. G. Pringle (2014)
Am J Physiol Regulatory Integrative Comp Physiol 306, R91-R101
   Abstract »    Full Text »    PDF »
Antenatal betamethasone exposure alters renal responses to angiotensin-(1-7) in uninephrectomized adult male sheep.
J. Bi, S. A. Contag, L. C. Carey, L. Tang, N. K. Valego, M. C. Chappell, and J. C. Rose (2013)
Journal of Renin-Angiotensin-Aldosterone System 14, 290-298
   Abstract »    Full Text »    PDF »
Role of Angiotensin-(1-7) in Gastroprotection against Stress-Induced Ulcerogenesis. The Involvement of Mas Receptor, Nitric Oxide, Prostaglandins, and Sensory Neuropeptides.
M. Magierowski, K. Jasnos, M. Pawlik, G. Krzysiek-Maczka, A. Ptak-Belowska, R. Olszanecki, S. Kwiecien, R. Korbut, and T. Brzozowski (2013)
J. Pharmacol. Exp. Ther. 347, 717-726
   Abstract »    Full Text »    PDF »
Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice.
A. R. Silva, E. C. Aguilar, J. I. Alvarez-Leite, R. F. da Silva, R. M. E. Arantes, M. Bader, N. Alenina, G. Pelli, S. Lenglet, K. Galan, et al. (2013)
Am J Physiol Regulatory Integrative Comp Physiol 305, R1323-R1330
   Abstract »    Full Text »    PDF »
Angiotensin II-Independent Angiotensin-(1-7) Formation in Rat Hippocampus: Involvement of Thimet Oligopeptidase.
M. G. A. G. Pereira, L. L. Souza, C. Becari, D. A. Duarte, F. R. B. Camacho, J. A. C. Oliveira, M. D. Gomes, E. B. Oliveira, M. C. O. Salgado, N. Garcia-Cairasco, et al. (2013)
Hypertension 62, 879-885
   Abstract »    Full Text »    PDF »
Antenatal betamethasone exposure is associated with lower ANG-(1-7) and increased ACE in the CSF of adult sheep.
A. C. Marshall, H. A. Shaltout, N. T. Pirro, J. C. Rose, D. I. Diz, and M. C. Chappell (2013)
Am J Physiol Regulatory Integrative Comp Physiol 305, R679-R688
   Abstract »    Full Text »    PDF »
Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress.
A. M. Lima, C. H. Xavier, A. J. Ferreira, M. K. Raizada, G. Wallukat, E. P. P. Velloso, R. A. S. d. Santos, and M. A. P. Fontes (2013)
Am J Physiol Heart Circ Physiol 305, H1057-H1067
   Abstract »    Full Text »    PDF »
Angiotensin-converting enzyme 2 activity in patients with chronic kidney disease.
M. A. Roberts, E. Velkoska, F. L. Ierino, and L. M. Burrell (2013)
Nephrol. Dial. Transplant. 28, 2287-2294
   Abstract »    Full Text »    PDF »
Agonists of MAS oncogene and angiotensin II type 2 receptors attenuate cardiopulmonary disease in rats with neonatal hyperoxia-induced lung injury.
G. T. M. Wagenaar, E. H. Laghmani, M. Fidder, R. M. A. Sengers, Y. P. de Visser, L. de Vries, R. Rink, A. J. M. Roks, G. Folkerts, and F. J. Walther (2013)
Am J Physiol Lung Cell Mol Physiol 305, L341-L351
   Abstract »    Full Text »    PDF »
Complete Renin-Angiotensin-Aldosterone System (RAAS) Blockade in High-Risk Patients: Recent Insights From Renin Blockade Studies.
S. Rajagopalan, G. L. Bakris, W. T. Abraham, B. Pitt, and R. D. Brook (2013)
Hypertension 62, 444-449
   Full Text »    PDF »
The components of the angiotensin-(1-7) system are differentially expressed during follicular wave in cattle.
M. H. Barreta, B. G. Gasperin, R. Ferreira, M. Rovani, G. R. Pereira, R. C. Bohrer, J. F. de Oliveira, and P. B. D. Goncalves (2013)
Journal of Renin-Angiotensin-Aldosterone System
   Abstract »    Full Text »    PDF »
Antiglaucomatous Effects of the Activation of Intrinsic Angiotensin-Converting Enzyme 2.
G. Foureaux, J. C. Nogueira, B. S. Nogueira, G. O. Fulgencio, G. B. Menezes, S. O. A. Fernandes, V. N. Cardoso, R. S. Fernandes, G. P. Oliveira, J. R. Franca, et al. (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4296-4306
   Abstract »    Full Text »    PDF »
Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling.
L. Xiao, K. K. V. Haack, and I. H. Zucker (2013)
Am J Physiol Cell Physiol 304, C1073-C1079
   Abstract »    Full Text »    PDF »
Angiotensin-Converting Enzyme 2 Activation Improves Endothelial Function.
R. A. Fraga-Silva, F. P. Costa-Fraga, T. M. Murca, P. L. Moraes, A. Martins Lima, R. Q. Lautner, C. H. Castro, C. M. A. Soares, C. L. Borges, A. P. Nadu, et al. (2013)
Hypertension 61, 1233-1238
   Abstract »    Full Text »    PDF »
Control of Adipogenesis by the Autocrine Interplays between Angiotensin 1-7/Mas Receptor and Angiotensin II/AT1 Receptor Signaling Pathways.
A. Than, M. K.-S. Leow, and P. Chen (2013)
J. Biol. Chem. 288, 15520-15531
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands.
A. P. Davenport, S. P. H. Alexander, J. L. Sharman, A. J. Pawson, H. E. Benson, A. E. Monaghan, W. C. Liew, C. P. Mpamhanga, T. I. Bonner, R. R. Neubig, et al. (2013)
Pharmacol. Rev. 65, 967-986
   Abstract »    Full Text »    PDF »
The Discovery of the ACE2 Gene.
A. J. Marian (2013)
Circ. Res. 112, 1307-1309
   Full Text »    PDF »
Complete blockade of the vasorelaxant effects of angiotensin-(1-7) and bradykinin in murine microvessels by antagonists of the receptor Mas.
C. Peiro, S. Vallejo, F. Gembardt, E. Palacios, S. Novella, V. Azcutia, L. Rodriguez-Manas, C. Hermenegildo, C. F. Sanchez-Ferrer, and T. Walther (2013)
J. Physiol. 591, 2275-2285
   Abstract »    Full Text »    PDF »
The Never-ending Story of Angiotensin Peptides: Beyond Angiotensin I and II.
L. J. Dell'Italia and C. M. Ferrario (2013)
Circ. Res. 112, 1086-1087
   Full Text »    PDF »
Discovery and Characterization of Alamandine: A Novel Component of the Renin-Angiotensin System.
R. Q. Lautner, D. C. Villela, R. A. Fraga-Silva, N. Silva, T. Verano-Braga, F. Costa-Fraga, J. Jankowski, V. Jankowski, F. Sousa, A. Alzamora, et al. (2013)
Circ. Res. 112, 1104-1111
   Abstract »    Full Text »    PDF »
Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2-/- mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation.
C. Fang, E. Stavrou, A. A. Schmaier, N. Grobe, M. Morris, A. Chen, M. T. Nieman, G. N. Adams, G. LaRusch, Y. Zhou, et al. (2013)
Blood 121, 3023-3032
   Abstract »    Full Text »    PDF »
AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.
A. C. da Costa Goncalves, R. A. Fraga-Silva, R. Leite, and R. A. S. Santos (2013)
Exp Physiol 98, 850-855
   Abstract »    Full Text »    PDF »
Network Modeling Reveals Steps in Angiotensin Peptide Processing.
J. H. Schwacke, J. C. G. Spainhour, J. L. Ierardi, J. M. Chaves, J. M. Arthur, M. G. Janech, and J. C. Q. Velez (2013)
Hypertension 61, 690-700
   Abstract »    Full Text »    PDF »
Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system.
R. A. S. Santos, A. J. Ferreira, T. Verano-Braga, and M. Bader (2013)
J. Endocrinol. 216, R1-R17
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver.
C. B. Herath, K. Mak, L. M. Burrell, and P. W. Angus (2013)
Am J Physiol Gastrointest Liver Physiol 304, G99-G108
   Abstract »    Full Text »    PDF »
Loss of ACE2 Exaggerates High-Calorie Diet-Induced Insulin Resistance by Reduction of GLUT4 in Mice.
M. Takeda, K. Yamamoto, Y. Takemura, H. Takeshita, K. Hongyo, T. Kawai, H. Hanasaki-Yamamoto, R. Oguro, Y. Takami, Y. Tatara, et al. (2013)
Diabetes 62, 223-233
   Abstract »    Full Text »    PDF »
Impact of ACE2 Deficiency and Oxidative Stress on Cerebrovascular Function With Aging.
R. A. P. Silva, Y. Chu, J. D. Miller, I. J. Mitchell, J. M. Penninger, F. M. Faraci, and D. D. Heistad (2012)
Stroke 43, 3358-3363
   Abstract »    Full Text »    PDF »
Altered regional blood flow distribution in Mas-deficient mice.
G. A. Botelho-Santos, M. Bader, N. Alenina, and R. A. S. Santos (2012)
Therapeutic Advances in Cardiovascular Disease 6, 201-211
   Abstract »    PDF »
Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats.
P. S. Guimaraes, N. M. Santiago, C. H. Xavier, E. P. P. Velloso, M. A. P. Fontes, R. A. S. Santos, and M. J. Campagnole-Santos (2012)
Am J Physiol Heart Circ Physiol 303, H393-H400
   Abstract »    Full Text »    PDF »
Possible Involvement of Angiotensin-Converting Enzyme 2 and Mas Activation in Inhibitory Effects of Angiotensin II Type 1 Receptor Blockade on Vascular Remodeling.
M. Iwai, H. Nakaoka, I. Senba, H. Kanno, T. Moritani, and M. Horiuchi (2012)
Hypertension 60, 137-144
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats.
J. F. Giani, V. Burghi, L. C. Veiras, A. Tomat, M. C. Munoz, G. Cao, D. Turyn, J. E. Toblli, and F. P. Dominici (2012)
Am J Physiol Renal Physiol 302, F1606-F1615
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats.
A. Shah, Y.-B. Oh, S. H. Lee, J. M. Lim, and S. H. Kim (2012)
Am J Physiol Heart Circ Physiol 302, H2372-H2380
   Abstract »    Full Text »    PDF »
Evidence that angiotensin-(1-7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle.
K. Honorato-Sampaio, V. M. Pereira, R. A. S. Santos, and A. M. Reis (2012)
Exp Physiol 97, 642-650
   Abstract »    Full Text »    PDF »
Chronic kidney disease: cardiac and renal angiotensin-converting enzyme (ACE) 2 expression in rats after subtotal nephrectomy and the effect of ACE inhibition.
L. M. Burrell, L. Burchill, R. G. Dean, K. Griggs, S. K. Patel, and E. Velkoska (2012)
Exp Physiol 97, 477-485
   Abstract »    Full Text »    PDF »
Molecular characterization and regulation of the angiotensin-converting enzyme type 2/Angiotensin-(1-7)/MAS receptor axis during the ovulation process in cattle.
J. Tonellotto dos Santos, R. Ferreira, B. G. Gasperin, L. C. Siqueira, J. F. de Oliveira, R. A. Santos, A. M. Reis, and P. B. Goncalves (2012)
Journal of Renin-Angiotensin-Aldosterone System 13, 91-98
   Abstract »    Full Text »    PDF »
Review: Novel roles of nuclear angiotensin receptors and signaling mechanisms.
T. M. Gwathmey, E. M. Alzayadneh, K. D. Pendergrass, and M. C. Chappell (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R518-R530
   Abstract »    Full Text »    PDF »
Review: Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney.
B. Ellis, X. C. Li, E. Miguel-Qin, V. Gu, and J. L. Zhuo (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R494-R509
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) attenuates the chronotropic response to angiotensin II via stimulation of PTEN in the spontaneously hypertensive rat neurons.
A. Modgil, Q. Zhang, A. Pingili, N. Singh, F. Yao, J. Ge, L. Guo, C. Xuan, S. T. O'Rourke, and C. Sun (2012)
Am J Physiol Heart Circ Physiol 302, H1116-H1122
   Abstract »    Full Text »    PDF »
Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor.
M. Flores-Munoz, L. M. Work, K. Douglas, L. Denby, A. F. Dominiczak, D. Graham, and S. A. Nicklin (2012)
Hypertension 59, 300-307
   Abstract »    Full Text »    PDF »
Identification of Membrane-bound Variant of Metalloendopeptidase Neurolysin (EC 3.4.24.16) as the Non-angiotensin Type 1 (Non-AT1), Non-AT2 Angiotensin Binding Site.
N. J. Wangler, K. L. Santos, I. Schadock, F. K. Hagen, E. Escher, M. Bader, R. C. Speth, and V. T. Karamyan (2012)
J. Biol. Chem. 287, 114-122
   Abstract »    Full Text »    PDF »
Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart.
N. Hashikawa-Hobara, N. Y.-K. Chan, and R. Levi (2012)
J. Pharmacol. Exp. Ther. 340, 185-191
   Abstract »    Full Text »    PDF »
Inhibition of Mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection.
T. Zhang, Z. Li, H. Dang, R. Chen, C. Liaw, T.-A. Tran, P. D. Boatman, D. T. Connolly, and J. W. Adams (2012)
Am J Physiol Heart Circ Physiol 302, H299-H311
   Abstract »    Full Text »    PDF »
BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect.
D. Ianzer, C. H. Xavier, F. C. Fraga, R. Q. Lautner, J. R. Guerreiro, L. T. Machado, E. P. Mendes, A. C. M. de Camargo, and R. A. S. Santos (2011)
Therapeutic Advances in Cardiovascular Disease 5, 281-295
   Abstract »    PDF »
Regulation of angiotensin-converting enzyme 2 and Mas receptor by Ang-(1-7) in heart and kidney of spontaneously hypertensive rats.
Z. Tan, J. Wu, and H. Ma (2011)
Journal of Renin-Angiotensin-Aldosterone System 12, 413-419
   Abstract »    PDF »
Mechanisms of Penile Erection and Basis for Pharmacological Treatment of Erectile Dysfunction.
K.- E. Andersson (2011)
Pharmacol. Rev. 63, 811-859
   Abstract »    Full Text »    PDF »
Brain-Selective Overexpression of Angiotensin-Converting Enzyme 2 Attenuates Sympathetic Nerve Activity and Enhances Baroreflex Function in Chronic Heart Failure.
L. Xiao, L. Gao, E. Lazartigues, and I. H. Zucker (2011)
Hypertension 58, 1057-1065
   Abstract »    Full Text »    PDF »
Therapeutic perspectives in hypertension: novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches.
T. Unger, L. Paulis, and D. A. Sica (2011)
Eur. Heart J. 32, 2739-2747
   Abstract »    Full Text »    PDF »
Swimming training improves the vasodilator effect of angiotensin-(1-7) in the aorta of spontaneously hypertensive rat.
D. M. R. Silva, A. Gomes-Filho, V. C. Olivon, T. M. S. Santos, L. K. Becker, R. A. S. Santos, and V. S. Lemos (2011)
J Appl Physiol 111, 1272-1277
   Abstract »    Full Text »    PDF »
The angiotensin-converting enzyme 2-angiotensin-(1-7) axis: the other side of the renin-angiotensin system.
M. Shahid (2011)
Exp Physiol 96, 987-988
   Full Text »    PDF »
Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats.
G. Raffai, M. J. Durand, and J. H. Lombard (2011)
Am J Physiol Heart Circ Physiol 301, H1341-H1352
   Abstract »    Full Text »    PDF »
Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke.
A. P. Mecca, R. W. Regenhardt, T. E. O'Connor, J. P. Joseph, M. K. Raizada, M. J. Katovich, and C. Sumners (2011)
Exp Physiol 96, 1084-1096
   Abstract »    Full Text »    PDF »
Angioprotectin: an angiotensin II-like peptide causing vasodilatory effects.
V. Jankowski, M. Tolle, R. A. S. Santos, T. Gunthner, E. Krause, M. Beyermann, P. Welker, M. Bader, S. V. B. Pinheiro, W. O. Sampaio, et al. (2011)
FASEB J 25, 2987-2995
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) induces ovulation and steroidogenesis in perfused rabbit ovaries.
G. E. N. Viana, V. M. Pereira, K. Honorato-Sampaio, C. A. Oliveira, R. A. S. Santos, and A. M. Reis (2011)
Exp Physiol 96, 957-965
   Abstract »    Full Text »    PDF »
The Angiotensin-(1-7)/Mas Receptor Axis Is Expressed in Sinoatrial Node Cells of Rats.
A. J. Ferreira, P. L. Moraes, G. Foureaux, A. B. Andrade, R. A. S. Santos, and A. P. Almeida (2011)
Journal of Histochemistry & Cytochemistry 59, 761-768
   Abstract »    Full Text »    PDF »
Angiotensin (1-7) Induces Mas Receptor Internalization.
M. M. Gironacci, H. P. Adamo, G. Corradi, R. A. Santos, P. Ortiz, and O. A. Carretero (2011)
Hypertension 58, 176-181
   Abstract »    Full Text »    PDF »
Beneficial effects of angiotensin (1-7) in diabetic rats with cardiomyopathy.
K. Singh, T. Singh, and P. L. Sharma (2011)
Therapeutic Advances in Cardiovascular Disease 5, 159-167
   Abstract »    PDF »
The role of the renin-angiotensin system in liver fibrosis.
M. K. Munshi, M. N. Uddin, and S. S. Glaser (2011)
Experimental Biology and Medicine 236, 557-566
   Abstract »    Full Text »    PDF »
ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good.
P. Xu, S. Sriramula, and E. Lazartigues (2011)
Am J Physiol Regulatory Integrative Comp Physiol 300, R804-R817
   Abstract »    Full Text »    PDF »
An Oral Formulation of Angiotensin-(1-7) Produces Cardioprotective Effects in Infarcted and Isoproterenol-Treated Rats.
F. D. Marques, A. J. Ferreira, R. D. M. Sinisterra, B. A. Jacoby, F. B. Sousa, M. V. Caliari, G. A. B. Silva, M. B. Melo, A. P. Nadu, L. E. Souza, et al. (2011)
Hypertension 57, 477-483
   Abstract »    Full Text »    PDF »
Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor.
M. Flores-Munoz, N. J. Smith, C. Haggerty, G. Milligan, and S. A. Nicklin (2011)
J. Physiol. 589, 939-951
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) increases neuronal potassium current via a nitric oxide-dependent mechanism.
R.-F. Yang, J.-X. Yin, Y.-L. Li, M. C. Zimmerman, and H. D. Schultz (2011)
Am J Physiol Cell Physiol 300, C58-C64
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats.
J. F. Giani, M. C. Munoz, R. A. Pons, G. Cao, J. E. Toblli, D. Turyn, and F. P. Dominici (2011)
Am J Physiol Renal Physiol 300, F272-F282
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) Reduces Fibrosis in Orthotopic Breast Tumors.
K. L. Cook, L. J. Metheny-Barlow, E. A. Tallant, and P. E. Gallagher (2010)
Cancer Res. 70, 8319-8328
   Abstract »    Full Text »    PDF »
Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide.
T. M. Gwathmey, B. M. Westwood, N. T. Pirro, L. Tang, J. C. Rose, D. I. Diz, and M. C. Chappell (2010)
Am J Physiol Renal Physiol 299, F983-F990
   Abstract »    Full Text »    PDF »
Anti-Inflammatory Effects of the Activation of the Angiotensin-(1-7) Receptor, Mas, in Experimental Models of Arthritis.
K. D. da Silveira, F. M. Coelho, A. T. Vieira, D. Sachs, L. C. Barroso, V. V. Costa, T. L. B. Bretas, M. Bader, L. P. de Sousa, T. A. da Silva, et al. (2010)
J. Immunol. 185, 5569-5576
   Abstract »    Full Text »    PDF »
Angiotensin I-Converting Enzyme Type 2 (ACE2) Gene Therapy Improves Glycemic Control in Diabetic Mice.
S. M. Bindom, C. P. Hans, H. Xia, A. H. Boulares, and E. Lazartigues (2010)
Diabetes 59, 2540-2548
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries.
M. J. Durand, G. Raffai, B. D. Weinberg, and J. H. Lombard (2010)
Am J Physiol Heart Circ Physiol 299, H1024-H1033
   Abstract »    Full Text »    PDF »
Angiotensin (1-7) Receptor Antagonism Equalizes Angiotensin II-Induced Hypertension in Male and Female Spontaneously Hypertensive Rats.
J. C. Sullivan, K. Bhatia, T. Yamamoto, and A. A. Elmarakby (2010)
Hypertension 56, 658-666
   Abstract »    Full Text »    PDF »
Angiotensin II mediates epithelial-to-mesenchymal transformation in tubular cells by ANG 1-7/MAS-1-dependent pathways.
W. C. Burns, E. Velkoska, R. Dean, L. M. Burrell, and M. C. Thomas (2010)
Am J Physiol Renal Physiol 299, F585-F593
   Abstract »    Full Text »    PDF »
Vasoprotective and Atheroprotective Effects of Angiotensin (1-7) in Apolipoprotein E-Deficient Mice.
S. Tesanovic, A. Vinh, T. A. Gaspari, D. Casley, and R. E. Widdop (2010)
Arterioscler Thromb Vasc Biol 30, 1606-1613
   Abstract »    Full Text »    PDF »
Astroglia are a possible cellular substrate of angiotensin(1-7) effects in the rostral ventrolateral medulla.
F. Guo, B. Liu, F. Tang, S. Lane, E. A. Souslova, D. M. Chudakov, J. F. R. Paton, and S. Kasparov (2010)
Cardiovasc Res 87, 578-584
   Abstract »    Full Text »    PDF »
Angiotensin II signaling through the AT1a and AT1b receptors does not have a role in the development of cerulein-induced chronic pancreatitis in the mouse.
B. Ulmasov, Z. Xu, V. Talkad, K. Oshima, and B. A. Neuschwander-Tetri (2010)
Am J Physiol Gastrointest Liver Physiol 299, G70-G80
   Abstract »    Full Text »    PDF »
Vascular Relaxation, Antihypertensive Effect, and Cardioprotection of a Novel Peptide Agonist of the Mas Receptor.
S. Q. Savergnini, M. Beiman, R. Q. Lautner, V. de Paula-Carvalho, K. Allahdadi, D. C. Pessoa, F. P. Costa-Fraga, R. A. Fraga-Silva, G. Cojocaru, Y. Cohen, et al. (2010)
Hypertension 56, 112-120
   Abstract »    Full Text »    PDF »
Inhibition of Angiotensin-Converting Enzyme 2 Exacerbates Cardiac Hypertrophy and Fibrosis in Ren-2 Hypertensive Rats.
A. J. Trask, L. Groban, B. M. Westwood, J. Varagic, D. Ganten, P. E. Gallagher, M. C. Chappell, and C. M. Ferrario (2010)
Am J Hypertens 23, 687-693
   Abstract »    Full Text »    PDF »
Simultaneous administration of Ang(1-7) or A-779 does not affect the chronic hypertensive effects of angiotensin II in normal rats.
J. P. Collister and D. B. Nahey (2010)
Journal of Renin-Angiotensin-Aldosterone System 11, 99-102
   Abstract »    PDF »
The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function.
C. M. Ferrario and J. Varagic (2010)
Am J Physiol Renal Physiol 298, F1297-F1305
   Abstract »    Full Text »    PDF »
Angiotensin-(1-7) stimulates high atrial pacing-induced ANP secretion via Mas/PI3-kinase/Akt axis and Na+/H+ exchanger.
A. Shah, R. Gul, K. Yuan, S. Gao, Y. B. Oh, U. H. Kim, and S. H. Kim (2010)
Am J Physiol Heart Circ Physiol 298, H1365-H1374
   Abstract »    Full Text »    PDF »
Physiology of Kidney Renin.
H. Castrop, K. Hocherl, A. Kurtz, F. Schweda, V. Todorov, and C. Wagner (2010)
Physiol Rev 90, 607-673
   Abstract »    Full Text »    PDF »
Lifetime Overproduction of Circulating Angiotensin-(1-7) Attenuates Deoxycorticosterone Acetate-Salt Hypertension-Induced Cardiac Dysfunction and Remodeling.
N. M. Santiago, P. S. Guimaraes, R. A. Sirvente, L. A.M. Oliveira, M. C. Irigoyen, R. A.S. Santos, and M. J. Campagnole-Santos (2010)
Hypertension 55, 889-896
   Abstract »    Full Text »    PDF »
Circulating Rather Than Cardiac Angiotensin-(1-7) Stimulates Cardioprotection After Myocardial Infarction.
Y. Wang, C. Qian, A. J. M. Roks, D. Westermann, S.-M. Schumacher, F. Escher, R. G. Schoemaker, T. L. Reudelhuber, W. H. van Gilst, H.-P. Schultheiss, et al. (2010)
Circ Heart Fail 3, 286-293
   Abstract »    Full Text »    PDF »
Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis.
J. Zhang, N. A. Noble, W. A. Border, and Y. Huang (2010)
Am J Physiol Renal Physiol 298, F579-F588
   Abstract »    Full Text »    PDF »
Expression and Distribution of NADPH Oxidase Isoforms in Human Myometrium--Role in Angiotensin II-induced Hypertrophy.
X.-L. Cui, B. Chang, and L. Myatt (2010)
Biol Reprod 82, 305-312
   Abstract »    Full Text »    PDF »
Inhibitory effects of angiotensin-(1-7) on the nerve stimulation-induced release of norepinephrine and neuropeptide Y from the mesenteric arterial bed.
M. Byku, H. Macarthur, and T. C. Westfall (2010)
Am J Physiol Heart Circ Physiol 298, H457-H465
   Abstract »    Full Text »    PDF »
Therapeutic Implications of the Vasoprotective Axis of the Renin-Angiotensin System in Cardiovascular Diseases.
A. J. Ferreira, R. A.S. Santos, C. N. Bradford, A. P. Mecca, C. Sumners, M. J. Katovich, and M. K. Raizada (2010)
Hypertension 55, 207-213
   Full Text »    PDF »
Effects of Angiotensin Metabolites in the Coronary Vascular Bed of the Spontaneously Hypertensive Rat: Loss of Angiotensin II Type 2 Receptor-Mediated Vasodilation.
E. Moltzer, A. V. A. Verkuil, R. van Veghel, A. H. J. Danser, and J. H. M. van Esch (2010)
Hypertension 55, 516-522
   Abstract »    Full Text »    PDF »
New Physiological Concepts of the Renin-Angiotensin System From the Investigation of Precursors and Products of Angiotensin I Metabolism.
C. M. Ferrario (2010)
Hypertension 55, 445-452
   Full Text »    PDF »
Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2: Prevention of Angiotensin II-Dependent Hypertension.
J. Wysocki, M. Ye, E. Rodriguez, F. R. Gonzalez-Pacheco, C. Barrios, K. Evora, M. Schuster, H. Loibner, K. B. Brosnihan, C. M. Ferrario, et al. (2010)
Hypertension 55, 90-98
   Abstract »    Full Text »    PDF »
Angiotensin II reduces membranous angiotensin-converting enzyme 2 in pressurized human aortic endothelial cells.
K. Iizuka, A. Kusunoki, T. Machida, and M. Hirafuji (2009)
Journal of Renin-Angiotensin-Aldosterone System 10, 210-215
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882