Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 100 (20): 11753-11758

Copyright © 2003 by the National Academy of Sciences.


A glucose sensor hiding in a family of transporters

Ana Díez-Sampedro*, Bruce A. Hirayama*, Christina Osswald{dagger}, Valentin Gorboulev{dagger}, Katharina Baumgarten{dagger}, Christopher Volk{dagger}, Ernest M. Wright*,{ddagger}, and Hermann Koepsell{dagger}

*Department of Physiology, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1751; and {dagger}Anatomical Institute, University of Wurzburg, Koellikerstrasse 6, 97070 Wurzburg, Germany

Received for publication May 20, 2003.

Abstract: We have examined the expression and function of a previously undescribed human member (SGLT3/SLC5A4) of the sodium/glucose cotransporter gene family (SLC5) that was first identified by the chromosome 22 genome project. The cDNA was cloned and sequenced, confirming that the gene coded for a 659-residue protein with 70% amino acid identity to the human SGLT1. RT-PCR and Western blotting showed that the gene was transcribed and mRNA was translated in human skeletal muscle and small intestine. Immunofluorescence microscopy indicated that in the small intestine the protein was expressed in cholinergic neurons in the submucosal and myenteric plexuses, but not in enterocytes. In skeletal muscle SGLT3 immunoreactivity colocalized with the nicotinic acetylcholine receptor. Functional studies using the Xenopus laevis oocyte expression system showed that hSGLT3 was incapable of sugar transport, even though SGLT3 was efficiently inserted into the plasma membrane. Electrophysiological assays revealed that glucose caused a specific, phlorizin-sensitive, Na+-dependent depolarization of the membrane potential. Uptake assays under voltage clamp showed that the glucose-induced inward currents were not accompanied by glucose transport. We suggest that SGLT3 is not a Na+/glucose cotransporter but instead a glucose sensor in the plasma membrane of cholinergic neurons, skeletal muscle, and other tissues. This points to an unexpected role of glucose and SLC5 proteins in physiology, and highlights the importance of determining the tissue expression and function of new members of gene families.

Key Words: Na/sugar cotransporter • human SGLT3 • muscle

{ddagger} To whom correspondence should be addressed. E-mail: ewright{at}

Edited by Michael J. Welsh, University of Iowa College of Medicine, Iowa City, IA, and approved July 2, 2003

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: αMDG, α-methyl-D-glucopyranoside.

Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity.
L. Roosen, W. Boesmans, M. Dondeyne, I. Depoortere, J. Tack, and P. Vanden Berghe (2012)
J. Physiol. 590, 4321-4333
   Abstract »    Full Text »    PDF »
Tofogliflozin, a Potent and Highly Specific Sodium/Glucose Cotransporter 2 Inhibitor, Improves Glycemic Control in Diabetic Rats and Mice.
M. Suzuki, K. Honda, M. Fukazawa, K. Ozawa, H. Hagita, T. Kawai, M. Takeda, T. Yata, M. Kawai, T. Fukuzawa, et al. (2012)
J. Pharmacol. Exp. Ther. 341, 692-701
   Abstract »    Full Text »    PDF »
Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise.
L. A. Schier, T. L. Davidson, and T. L. Powley (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R1351-R1363
   Abstract »    Full Text »    PDF »
Role of gut nutrient sensing in stimulating appetite and conditioning food preferences.
A. Sclafani and K. Ackroff (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R1119-R1133
   Abstract »    Full Text »    PDF »
Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences.
I. Sabolic, I. Vrhovac, D. B. Eror, M. Gerasimova, M. Rose, D. Breljak, M. Ljubojevic, H. Brzica, A. Sebastiani, S. C. Thal, et al. (2012)
Am J Physiol Cell Physiol 302, C1174-C1188
   Abstract »    Full Text »    PDF »
Mouse SGLT3a generates proton-activated currents but does not transport sugar.
S. Barcelona, D. Menegaz, and A. Diez-Sampedro (2012)
Am J Physiol Cell Physiol 302, C1073-C1082
   Abstract »    Full Text »    PDF »
SGLT and GLUT: are they teammates? Focus on "Mouse SGLT3a generates proton-activated currents but does not transport sugar".
T. W. Balon (2012)
Am J Physiol Cell Physiol 302, C1071-C1072
   Full Text »    PDF »
Na+-D-glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion.
V. Gorboulev, A. Schurmann, V. Vallon, H. Kipp, A. Jaschke, D. Klessen, A. Friedrich, S. Scherneck, T. Rieg, R. Cunard, et al. (2012)
Diabetes 61, 187-196
   Abstract »    Full Text »    PDF »
Amino Acid Residues in the GerAB Protein Important in the Function and Assembly of the Alanine Spore Germination Receptor of Bacillus subtilis 168.
G. R. Cooper and A. Moir (2011)
J. Bacteriol. 193, 2261-2267
   Abstract »    Full Text »    PDF »
Biology of Human Sodium Glucose Transporters.
E. M. Wright, D. D. F. Loo, and B. A. Hirayama (2011)
Physiol Rev 91, 733-794
   Abstract »    Full Text »    PDF »
Sugar Binding Residue Affects Apparent Na+ Affinity and Transport Stoichiometry in Mouse Sodium/Glucose Cotransporter Type 3B.
A. Diez-Sampedro and S. Barcelona (2011)
J. Biol. Chem. 286, 7975-7982
   Abstract »    Full Text »    PDF »
F. D. de Carvalho and M. Quick (2011)
J. Biol. Chem. 286, 131-137
   Abstract »    Full Text »    PDF »
Functional expression of SGLTs in rat brain.
A. S. Yu, B. A. Hirayama, G. Timbol, J. Liu, E. Basarah, V. Kepe, N. Satyamurthy, S.-C. Huang, E. M. Wright, and J. R. Barrio (2010)
Am J Physiol Cell Physiol 299, C1277-C1284
   Abstract »    Full Text »    PDF »
Functional characterization of mouse sodium/glucose transporter type 3b.
O. Aljure and A. Diez-Sampedro (2010)
Am J Physiol Cell Physiol 299, C58-C65
   Abstract »    Full Text »    PDF »
Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity.
S. Polakof, R. Alvarez, and J. L. Soengas (2010)
Am J Physiol Regulatory Integrative Comp Physiol 299, R19-R32
   Abstract »    Full Text »    PDF »
Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor.
Y. Popova, P. Thayumanavan, E. Lonati, M. Agrochao, and J. M. Thevelein (2010)
PNAS 107, 2890-2895
   Abstract »    Full Text »    PDF »
Familial Renal Glucosuria and SGLT2: From a Mendelian Trait to a Therapeutic Target.
R. Santer and J. Calado (2010)
Clin. J. Am. Soc. Nephrol. 5, 133-141
   Abstract »    Full Text »    PDF »
Functioning and Evolutionary Significance of Nutrient Transceptors.
J. M. Thevelein and K. Voordeckers (2009)
Mol. Biol. Evol. 26, 2407-2414
   Abstract »    Full Text »    PDF »
GLUT2 mutations, translocation, and receptor function in diet sugar managing.
A. Leturque, E. Brot-Laroche, and M. Le Gall (2009)
Am J Physiol Endocrinol Metab 296, E985-E992
   Abstract »    Full Text »    PDF »
Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects.
J. Ma, M. Bellon, J. M. Wishart, R. Young, L. A. Blackshaw, K. L. Jones, M. Horowitz, and C. K. Rayner (2009)
Am J Physiol Gastrointest Liver Physiol 296, G735-G739
   Abstract »    Full Text »    PDF »
Dissociation between sensing and metabolism of glucose in sugar sensing neurones.
J. A. Gonzalez, F. Reimann, and D. Burdakov (2009)
J. Physiol. 587, 41-48
   Abstract »    Full Text »    PDF »
Metabolism-Independent Sugar Sensing in Central Orexin Neurons.
J. A. Gonzalez, L. T. Jensen, L. Fugger, and D. Burdakov (2008)
Diabetes 57, 2569-2576
   Abstract »    Full Text »    PDF »
Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody.
D. Balen, M. Ljubojevic, D. Breljak, H. Brzica, V. Zlender, H. Koepsell, and I. Sabolic (2008)
Am J Physiol Cell Physiol 295, C475-C489
   Abstract »    Full Text »    PDF »
Transmembrane IV of the high-affinity sodium-glucose cotransporter participates in sugar binding.
T. Liu, B. Lo, P. Speight, and M. Silverman (2008)
Am J Physiol Cell Physiol 295, C64-C72
   Abstract »    Full Text »    PDF »
Protection of muscle membrane excitability during cycling in humans: a role for SGLT3?.
T. J. Fairchild (2008)
J Appl Physiol 104, 315
   Full Text »    PDF »
Reply to Fairchild.
H. Green (2008)
J Appl Physiol 104, 316
   Full Text »    PDF »
Tripeptides of RS1 (RSC1A1) Inhibit a Monosaccharide-dependent Exocytotic Pathway of Na+-D-Glucose Cotransporter SGLT1 with High Affinity.
A. Vernaleken, M. Veyhl, V. Gorboulev, G. Kottra, D. Palm, B.-C. Burckhardt, G. Burckhardt, R. Pipkorn, N. Beier, C. van Amsterdam, et al. (2007)
J. Biol. Chem. 282, 28501-28513
   Abstract »    Full Text »    PDF »
Brain Glucose Sensing, Counterregulation, and Energy Homeostasis.
N. Marty, M. Dallaporta, and B. Thorens (2007)
Physiology 22, 241-251
   Abstract »    Full Text »    PDF »
Is active glucose transport present in bovine ciliary body epithelium?.
C. Y. Chan, J. A. Guggenheim, and C. H. To (2007)
Am J Physiol Cell Physiol 292, C1087-C1093
   Abstract »    Full Text »    PDF »
Imino Sugars Are Potent Agonists of the Human Glucose Sensor SGLT3.
A. A. Voss, A. Diez-Sampedro, B. A. Hirayama, D. D. F. Loo, and E. M. Wright (2007)
Mol. Pharmacol. 71, 628-634
   Abstract »    Full Text »    PDF »
Sodium-Coupled Glucose Cotransporters Contribute to Hypothalamic Glucose Sensing.
D. O'Malley, F. Reimann, A. K. Simpson, and F. M. Gribble (2006)
Diabetes 55, 3381-3386
   Abstract »    Full Text »    PDF »
Signaling Mechanisms Underlying the Release of Glucagon-Like Peptide 1.
F. Reimann, P. S. Ward, and F. M. Gribble (2006)
Diabetes 55, S78-S85
   Abstract »    Full Text »    PDF »
Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter.
S. L. Freeman, D. Bohan, N. Darcel, and H. E. Raybould (2006)
Am J Physiol Gastrointest Liver Physiol 291, G439-G445
   Abstract »    Full Text »    PDF »
Molecular interactions between dipeptides, drugs and the human intestinal H+-oligopeptide cotransporter hPEPT1.
M. Sala-Rabanal, D. D. F. Loo, B. A. Hirayama, E. Turk, and E. M. Wright (2006)
J. Physiol. 574, 149-166
   Abstract »    Full Text »    PDF »
Glucose-sensing neurons of the hypothalamus.
D. Burdakov, S. M. Luckman, and A. Verkhratsky (2005)
Phil Trans R Soc B 360, 2227-2235
   Abstract »    Full Text »    PDF »
Apical GLUT2: A Major Pathway of Intestinal Sugar Absorption.
G. L. Kellett and E. Brot-Laroche (2005)
Diabetes 54, 3056-3062
   Abstract »    Full Text »    PDF »
The Broadly Selective Human Na+/Nucleoside Cotransporter (hCNT3) Exhibits Novel Cation-coupled Nucleoside Transport Characteristics.
K. M. Smith, M. D. Slugoski, S. K. Loewen, A. M. L. Ng, S. Y. M. Yao, X.-Z. Chen, E. Karpinski, C. E. Cass, S. A. Baldwin, and J. D. Young (2005)
J. Biol. Chem. 280, 25436-25449
   Abstract »    Full Text »    PDF »
Analysis of Transport Activity of Arabidopsis Sugar Alcohol Permease Homolog AtPLT5.
A. Reinders, J. A. Panshyshyn, and J. M. Ward (2005)
J. Biol. Chem. 280, 1594-1602
   Abstract »    Full Text »    PDF »
Mice without the Regulator Gene Rsc1A1 Exhibit Increased Na+-D-Glucose Cotransport in Small Intestine and Develop Obesity.
C. Osswald, K. Baumgarten, F. Stumpel, V. Gorboulev, M. Akimjanova, K.-P. Knobeloch, I. Horak, R. Kluge, H.-G. Joost, and H. Koepsell (2005)
Mol. Cell. Biol. 25, 78-87
   Abstract »    Full Text »    PDF »
Zinc Potentiates an Uncoupled Anion Conductance Associated with the Dopamine Transporter.
A.-K. Meinild, H. H. Sitte, and U. Gether (2004)
J. Biol. Chem. 279, 49671-49679
   Abstract »    Full Text »    PDF »
Neuronal Glucosensing: What Do We Know After 50 Years?.
B. E. Levin, V. H. Routh, L. Kang, N. M. Sanders, and A. A. Dunn-Meynell (2004)
Diabetes 53, 2521-2528
   Abstract »    Full Text »    PDF »
Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport.
H. Zhao, H. Shiue, S. Palkon, Y. Wang, P. Cullinan, J. K. Burkhardt, M. W. Musch, E. B. Chang, and J. R. Turner (2004)
PNAS 101, 9485-9490
   Abstract »    Full Text »    PDF »
The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter.
M. J. Coady, M.-H. Chang, F. M. Charron, C. Plata, B. Wallendorff, J. F. Sah, S. D. Markowitz, M. F. Romero, and J.-Y. Lapointe (2004)
J. Physiol. 557, 719-731
   Abstract »    Full Text »    PDF »
H. Merzendorfer (2004)
J. Exp. Biol. 207, 388
   Full Text »    PDF »
Synthesis of 18F-Fluoroalkyl-{beta}-D-Glucosides and Their Evaluation as Tracers for Sodium-Dependent Glucose Transporters.
T. J. de Groot, M. Veyhl, C. Terwinghe, V. Vanden Bempt, P. Dupont, L. Mortelmans, A. M. Verbruggen, G. M. Bormans, and H. Koepsell (2003)
J. Nucl. Med. 44, 1973-1981
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882