Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 100 (24): 14397-14402

Copyright © 2003 by the National Academy of Sciences.


Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses

Kimberly A. Moore, Roger A. Nicoll*, and Dietmar Schmitz{dagger}

Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, CA 94143

Contributed by Roger A. Nicoll, September 10, 2003

Abstract: The release properties of synapses in the central nervous system vary greatly, not only across anatomically distinct types of synapses but also among the same class of synapse. This variation manifests itself in large part by differences in the probability of transmitter release, which affects such activity-dependent presynaptic forms of plasticity as paired-pulse facilitation and frequency facilitation. This heterogeneity in presynaptic function reflects differences in the intrinsic properties of the synaptic terminal and the activation of presynaptic neurotransmitter receptors. Here we show that the unique presynaptic properties of the hippocampal mossy fiber synapse are largely imparted onto the synapse by the continuous local action of extracellular adenosine at presynaptic A1 adenosine receptors, which maintains a low basal probability of transmitter release.

* To whom correspondence should be addressed. E-mail: nicoll{at}

{dagger} Present address: Neuroscience Research Center at the Charite, Humboldt University, Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany.

Abbreviations: PPF, paired-pulse facilitation; A/C, associational/commissural; LTP, long-term potentiation; ACSF, artificial cerebrospinal fluid; fEPSP, field excitatory postsynaptic potential; LCCG-1, (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine; DPCPX, 8-cyclopentyl-1,3-dipropylxanthine; NEM, N-ethylmaleimide; CCPA, 2-chloro-N6-cyclopentyladenosine; GABAB, {gamma}-aminobutyric acid type B; mGluR, metabotropic glutamate receptor.

Kainate Receptors: Multiple Roles in Neuronal Plasticity.
T. S. Sihra, G. Flores, and A. Rodriguez-Moreno (2014)
Neuroscientist 20, 29-43
   Abstract »    Full Text »    PDF »
Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase.
M. J. Diogenes, R. Neves-Tome, S. Fucile, K. Martinello, M. Scianni, P. Theofilas, J. Lopatar, J. A. Ribeiro, L. Maggi, B. G. Frenguelli, et al. (2014)
Cereb Cortex 24, 67-80
   Abstract »    Full Text »    PDF »
Improved blood glucose disposal and altered insulin secretion patterns in adenosine A1 receptor knockout mice.
G. K. Yang, B. B. Fredholm, T. J. Kieffer, and Y. N. Kwok (2012)
Am J Physiol Endocrinol Metab 303, E180-E190
   Abstract »    Full Text »    PDF »
M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion.
F. Zheng, J. Wess, and C. Alzheimer (2012)
J Neurophysiol 108, 91-100
   Abstract »    Full Text »    PDF »
Presynaptic LTP and LTD of Excitatory and Inhibitory Synapses.
P. E. Castillo (2012)
Cold Spring Harb Perspect Biol 4, a005728
   Abstract »    Full Text »    PDF »
Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission.
O. Pascual, S. Ben Achour, P. Rostaing, A. Triller, and A. Bessis (2012)
PNAS 109, E197-E205
   Abstract »    Full Text »    PDF »
Frequency Facilitation at Mossy Fiber-CA3 Synapses of Freely Behaving Rats Contributes to the Induction of Persistent LTD via an Adenosine-A1 Receptor-Regulated Mechanism.
H. Hagena and D. Manahan-Vaughan (2010)
Cereb Cortex 20, 1121-1130
   Abstract »    Full Text »    PDF »
Frequency Facilitation at Mossy Fiber-CA3 Synapses of Freely Behaving Rats Is Regulated by Adenosine A1 Receptors.
J. Klausnitzer and D. Manahan-Vaughan (2008)
J. Neurosci. 28, 4836-4840
   Abstract »    Full Text »    PDF »
Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels.
A. Gundlfinger, J. Bischofberger, F. W. Johenning, M. Torvinen, D. Schmitz, and J. Breustedt (2007)
J. Physiol. 582, 263-277
   Abstract »    Full Text »    PDF »
Physiology and Pathophysiology of Purinergic Neurotransmission.
G. Burnstock (2007)
Physiol Rev 87, 659-797
   Abstract »    Full Text »    PDF »
GABAergic Signaling to Newborn Neurons in Dentate Gyrus.
L. O. Wadiche, D. A. Bromberg, A. L. Bensen, and G. L. Westbrook (2005)
J Neurophysiol 94, 4528-4532
   Abstract »    Full Text »    PDF »
Astrocytic Purinergic Signaling Coordinates Synaptic Networks.
O. Pascual, K. B. Casper, C. Kubera, J. Zhang, R. Revilla-Sanchez, J.-Y. Sul, H. Takano, S. J. Moss, K. McCarthy, and P. G. Haydon (2005)
Science 310, 113-116
   Abstract »    Full Text »    PDF »
Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation.
D. E. Fedele, N. Gouder, M. Guttinger, L. Gabernet, L. Scheurer, T. Rulicke, F. Crestani, and D. Boison (2005)
Brain 128, 2383-2395
   Abstract »    Full Text »    PDF »
The Role of Extracellular Adenosine in Regulating Mossy Fiber Synaptic Plasticity.
M. Kukley, M. Schwan, B. B. Fredholm, and D. Dietrich (2005)
J. Neurosci. 25, 2832-2837
   Abstract »    Full Text »    PDF »
Adenosine and Epilepsy: From Therapeutic Rationale to New Therapeutic Strategies.
D. Boison (2005)
Neuroscientist 11, 25-36
   Abstract »    PDF »
Local protein synthesis and GABAB receptors regulate the reversibility of long-term potentiation at murine hippocampal mossy fibre-CA3 synapses.
C.-C. Huang and K.-S. Hsu (2004)
J. Physiol. 561, 91-108
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882