Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 100 (3): 975-980

Copyright © 2003 by the National Academy of Sciences.

From the Cover


BIOLOGICAL SCIENCES / CELL BIOLOGY

Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts

Wei Sha*, Jonathan Moore{dagger}, Katherine Chen*, Antonio D. Lassaletta*, Chung-Seon Yi*, John J. Tyson*, and Jill C. Sible*,{ddagger}

*Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406; and {dagger}Cancer Research UK London Research Institute, Clare Hall Labs, South Mimms, Herts, EN6 3LD, United Kingdom

Received for publication September 3, 2002.

Abstract: Cells progressing through the cell cycle must commit irreversibly to mitosis without slipping back to interphase before properly segregating their chromosomes. A mathematical model of cell-cycle progression in cell-free egg extracts from frog predicts that irreversible transitions into and out of mitosis are driven by hysteresis in the molecular control system. Hysteresis refers to toggle-like switching behavior in a dynamical system. In the mathematical model, the toggle switch is created by positive feedback in the phosphorylation reactions controlling the activity of Cdc2, a protein kinase bound to its regulatory subunit, cyclin B. To determine whether hysteresis underlies entry into and exit from mitosis in cell-free egg extracts, we tested three predictions of the Novak–Tyson model. (i) The minimal concentration of cyclin B necessary to drive an interphase extract into mitosis is distinctly higher than the minimal concentration necessary to hold a mitotic extract in mitosis, evidence for hysteresis. (ii) Unreplicated DNA elevates the cyclin threshold for Cdc2 activation, indication that checkpoints operate by enlarging the hysteresis loop. (iii) A dramatic "slowing down" in the rate of Cdc2 activation is detected at concentrations of cyclin B marginally above the activation threshold. All three predictions were validated. These observations confirm hysteresis as the driving force for cell-cycle transitions into and out of mitosis.


{ddagger} To whom correspondence should be addressed. E-mail: siblej{at}vt.edu.

Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved November 21, 2002

This paper was submitted directly (Track II) to the PNAS office.

See commentary on page 771.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Origin of bistability underlying mammalian cell cycle entry.
G. Yao, C. Tan, M. West, J. R. Nevins, and L. You (2014)
Mol Syst Biol 7, 485
   Abstract »    Full Text »    PDF »
Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion.
Y. Lin, S. Crosson, and N. F. Scherer (2014)
Mol Syst Biol 6, 445
   Abstract »    Full Text »    PDF »
Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops.
J. W. Williams, X. Cui, A. Levchenko, and A. M. Stevens (2014)
Mol Syst Biol 4, 234
   Abstract »    Full Text »    PDF »
Commitment to cyst formation in Giardia.
A. Sulemana, T. A. Paget, and E. L. Jarroll (2014)
Microbiology 160, 330-339
   Abstract »    Full Text »    PDF »
Role for regulated phosphatase activity in generating mitotic oscillations in Xenopus cell-free extracts.
T. Zhang, J. J. Tyson, and B. Novak (2013)
PNAS 110, 20539-20544
   Abstract »    Full Text »    PDF »
Robust mitotic entry is ensured by a latching switch.
C. Tuck, T. Zhang, T. Potapova, M. Malumbres, and B. Novak (2013)
Biology Open 2, 924-931
   Abstract »    Full Text »    PDF »
Complexity of Receptor Tyrosine Kinase Signal Processing.
N. Volinsky and B. N. Kholodenko (2013)
Cold Spring Harb Perspect Biol 5, a009043
   Abstract »    Full Text »    PDF »
Molecular mechanisms creating bistable switches at cell cycle transitions.
A. Verdugo, P. K. Vinod, J. J. Tyson, and B. Novak (2013)
Open Bio 3, 120179
   Abstract »    Full Text »    PDF »
Phosphorylation network dynamics in the control of cell cycle transitions.
D. Fisher, L. Krasinska, D. Coudreuse, and B. Novak (2012)
J. Cell Sci. 125, 4703-4711
   Abstract »    Full Text »    PDF »
Optimal homeostasis necessitates bistable control.
G. Wang (2012)
J R Soc Interface 9, 2723-2734
   Abstract »    Full Text »    PDF »
Modeling Regulatory Networks to Understand Plant Development: Small Is Beautiful.
A. M. Middleton, E. Farcot, M. R. Owen, and T. Vernoux (2012)
PLANT CELL 24, 3876-3891
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Responsible for the Selective and Low-Grade Induction of Proinflammatory Mediators in Murine Macrophages by Lipopolysaccharide.
U. Maitra, H. Deng, T. Glaros, B. Baker, D. G. S. Capelluto, Z. Li, and L. Li (2012)
J. Immunol. 189, 1014-1023
   Abstract »    Full Text »    PDF »
Computational Approaches for Analyzing Information Flow in Biological Networks.
B. Kholodenko, M. B. Yaffe, and W. Kolch (2012)
Science Signaling 5, re1
   Abstract »    Full Text »    PDF »
Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis.
M. R. Domingo-Sananes, O. Kapuy, T. Hunt, and B. Novak (2011)
Phil Trans R Soc B 366, 3584-3594
   Abstract »    Full Text »    PDF »
System-level feedbacks make the anaphase switch irreversible.
E. He, O. Kapuy, R. A. Oliveira, F. Uhlmann, J. J. Tyson, and B. Novak (2011)
PNAS 108, 10016-10021
   Abstract »    Full Text »    PDF »
Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited.
T. A. Potapova, S. Sivakumar, J. N. Flynn, R. Li, and G. J. Gorbsky (2011)
Mol. Biol. Cell 22, 1191-1206
   Abstract »    Full Text »    PDF »
A skeleton model for the network of cyclin-dependent kinases driving the mammalian cell cycle.
C. Gerard and A. Goldbeter (2011)
Interface Focus 1, 24-35
   Abstract »    Full Text »    PDF »
The Roles of Cyclin A2, B1, and B2 in Early and Late Mitotic Events.
D. Gong and J. E. Ferrell Jr. (2010)
Mol. Biol. Cell 21, 3149-3161
   Abstract »    Full Text »    PDF »
Building biological memory by linking positive feedback loops.
D.-E. Chang, S. Leung, M. R. Atkinson, A. Reifler, D. Forger, and A. J. Ninfa (2010)
PNAS 107, 175-180
   Abstract »    Full Text »    PDF »
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle.
C. Gerard and A. Goldbeter (2009)
PNAS 106, 21643-21648
   Abstract »    Full Text »    PDF »
Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the Arabidopsis Cdk1 Homolog CDKA;1.
N. Dissmeyer, A. K. Weimer, S. Pusch, K. De Schutter, C. L. A. Kamei, M. K. Nowack, B. Novak, G.-L. Duan, Y.-G. Zhu, L. De Veylder, et al. (2009)
PLANT CELL 21, 3641-3654
   Abstract »    Full Text »    PDF »
Computational systems biology of the cell cycle.
A. Csikasz-Nagy (2009)
Brief Bioinform 10, 424-434
   Abstract »    Full Text »    PDF »
Bistable switches control memory and plasticity in cellular differentiation.
L. Wang, B. L. Walker, S. Iannaccone, D. Bhatt, P. J. Kennedy, and W. T. Tse (2009)
PNAS 106, 6638-6643
   Abstract »    Full Text »    PDF »
The decision to enter mitosis: feedback and redundancy in the mitotic entry network.
A. Lindqvist, V. Rodriguez-Bravo, and R. H. Medema (2009)
J. Cell Biol. 185, 193-202
   Abstract »    Full Text »    PDF »
Coherent coupling of feedback loops: a design principle of cell signaling networks.
Y.-K. Kwon and K.-H. Cho (2008)
Bioinformatics 24, 1926-1932
   Abstract »    Full Text »    PDF »
Biological switches and clocks.
J. J Tyson, R. Albert, A. Goldbeter, P. Ruoff, and J. Sible (2008)
J R Soc Interface 5, S1-S8
   Abstract »    Full Text »    PDF »
Quantitative approaches to the study of bistability in the lac operon of Escherichia coli.
M. Santillan and M. C Mackey (2008)
J R Soc Interface 5, S29-S39
   Abstract »    Full Text »    PDF »
Rapid Cycling and Precocious Termination of G1 Phase in Cells Expressing CDK1AF.
J. R. Pomerening, J. A. Ubersax, and J. E. Ferrell Jr. (2008)
Mol. Biol. Cell 19, 3426-3441
   Abstract »    Full Text »    PDF »
Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops.
T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell Jr. (2008)
Science 321, 126-129
   Abstract »    Full Text »    PDF »
A proposal for robust temperature compensation of circadian rhythms.
C. I. Hong, E. D. Conrad, and J. J. Tyson (2007)
PNAS 104, 1195-1200
   Abstract »    Full Text »    PDF »
The role of modelling in identifying drug targets for diseases of the cell cycle.
R. G Clyde, J. L Bown, T. R Hupp, N. Zhelev, and J. W Crawford (2006)
J R Soc Interface 3, 617-627
   Abstract »    Full Text »    PDF »
Mixed Analog/Digital Gonadotrope Biosynthetic Response to Gonadotropin-releasing Hormone.
F. Ruf, M.-J. Park, F. Hayot, G. Lin, B. Roysam, Y. Ge, and S. C. Sealfon (2006)
J. Biol. Chem. 281, 30967-30978
   Abstract »    Full Text »    PDF »
Understanding bistability in complex enzyme-driven reaction networks.
G. Craciun, Y. Tang, and M. Feinberg (2006)
PNAS 103, 8697-8702
   Abstract »    Full Text »    PDF »
Multisite M-Phase Phosphorylation of Xenopus Wee1A.
S. Y. Kim, E. J. Song, K.-J. Lee, and J. E. Ferrell Jr. (2005)
Mol. Cell. Biol. 25, 10580-10590
   Abstract »    Full Text »    PDF »
Hysteresis in a synthetic mammalian gene network.
B. P. Kramer and M. Fussenegger (2005)
PNAS 102, 9517-9522
   Abstract »    Full Text »    PDF »
Quantitative Characterization of a Mitotic Cyclin Threshold Regulating Exit from Mitosis.
F. R. Cross, L. Schroeder, M. Kruse, and K. C. Chen (2005)
Mol. Biol. Cell 16, 2129-2138
   Abstract »    Full Text »    PDF »
Integrative Analysis of Cell Cycle Control in Budding Yeast.
K. C. Chen, L. Calzone, A. Csikasz-Nagy, F. R. Cross, B. Novak, and J. J. Tyson (2004)
Mol. Biol. Cell 15, 3841-3862
   Abstract »    Full Text »    PDF »
Accelerating Gene Regulatory Network Modeling Using Grid-Based Simulation.
J. M. McCollum, G. D. Peterson, C. D. Cox, and M. L. Simpson (2004)
SIMULATION 80, 231-241
   Abstract »    PDF »
PaASK1, a Mitogen-Activated Protein Kinase Kinase Kinase That Controls Cell Degeneration and Cell Differentiation in Podospora anserina.
S. Kicka and P. Silar (2004)
Genetics 166, 1241-1252
   Abstract »    Full Text »    PDF »
Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems.
D. Angeli, J. E. Ferrell Jr., and E. D. Sontag (2004)
PNAS 101, 1822-1827
   Abstract »    Full Text »    PDF »
Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades.
N. I. Markevich, J. B. Hoek, and B. N. Kholodenko (2004)
J. Cell Biol. 164, 353-359
   Abstract »    Full Text »    PDF »
Cyclin Aggregation and Robustness of Bio-switching.
B. M. Slepchenko and M. Terasaki (2003)
Mol. Biol. Cell 14, 4695-4706
   Abstract »    Full Text »    PDF »
Hysteresis meets the cell cycle.
M. J. Solomon (2003)
PNAS 100, 771-772
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882