Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 100 (6): 3083-3088

Copyright © 2003 by the National Academy of Sciences.


Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA

Brooke A. Murphy McDaniel, Frank J. Grundy, Irina Artsimovitch, and Tina M. Henkin*

Department of Microbiology, Ohio State University, Columbus, OH 43210

Accepted for publication January 23, 2003.

Received for publication December 20, 2002.

Abstract: Modulation of the structure of a leader RNA to control formation of an intrinsic termination signal is a common mechanism for regulation of gene expression in bacteria. Expression of the S box genes in Gram-positive organisms is induced in response to limitation for methionine. We previously postulated that methionine availability is monitored by binding of a regulatory factor to the leader RNA and suggested that methionine or S-adenosylmethionine (SAM) could serve as the metabolic signal. In this study, we show that efficient termination of the S box leader region by bacterial RNA polymerase depends on SAM but not on methionine or other related compounds. We also show that SAM directly binds to and induces a conformational change in the leader RNA. Both binding of SAM and SAM-directed transcription termination were blocked by leader mutations that cause constitutive expression in vivo. Overproduction of SAM synthetase in Bacillus subtilis resulted in delay in induction of S box gene expression in response to methionine starvation, consistent with the hypothesis that SAM is the molecular effector in vivo. These results indicate that SAM concentration is sensed directly by the nascent transcript in the absence of a trans-acting factor.

* To whom correspondence should be addressed at: Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210. E-mail: henkin.3{at}

Communicated by Charles Yanofsky, Stanford University, Stanford, CA

Computational Analysis of Cysteine and Methionine Metabolism and Its Regulation in Dairy Starter and Related Bacteria.
M. Liu, C. Prakash, A. Nauta, R. J. Siezen, and C. Francke (2012)
J. Bacteriol. 194, 3522-3533
   Abstract »    Full Text »    PDF »
Basis for ligand discrimination between ON and OFF state riboswitch conformations: The case of the SAM-I riboswitch.
V. K. Boyapati, W. Huang, J. Spedale, and F. Aboul-ela (2012)
RNA 18, 1230-1243
   Abstract »    Full Text »    PDF »
Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.
U. Doshi, J. M. Kelley, and D. Hamelberg (2012)
RNA 18, 300-307
   Abstract »    Full Text »    PDF »
Riboswitches: Structures and Mechanisms.
A. D. Garst, A. L. Edwards, and R. T. Batey (2011)
Cold Spring Harb Perspect Biol 3, a003533
   Abstract »    Full Text »    PDF »
Tertiary contacts control switching of the SAM-I riboswitch.
S. P. Hennelly and K. Y. Sanbonmatsu (2011)
Nucleic Acids Res. 39, 2416-2431
   Abstract »    Full Text »    PDF »
Direct Evidence for Control of the Pheromone-Inducible prgQ Operon of Enterococcus faecalis Plasmid pCF10 by a Countertranscript-Driven Attenuation Mechanism.
C. M. Johnson, D. A. Manias, H. A. H. Haemig, S. Shokeen, K. E. Weaver, T. M. Henkin, and G. M. Dunny (2010)
J. Bacteriol. 192, 1634-1642
   Abstract »    Full Text »    PDF »
Improving small-angle X-ray scattering data for structural analyses of the RNA world.
R. P. Rambo and J. A. Tainer (2010)
RNA 16, 638-646
   Abstract »    Full Text »    PDF »
RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis.
K. Shahbabian, A. Jamalli, L. Zig, and H. Putzer (2009)
EMBO J. 28, 3523-3533
   Abstract »    Full Text »    PDF »
A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
E. Poiata, M. M. Meyer, T. D. Ames, and R. R. Breaker (2009)
RNA 15, 2046-2056
   Abstract »    Full Text »    PDF »
A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm.
W. Huang, J. Kim, S. Jha, and F. Aboul-ela (2009)
Nucleic Acids Res. 37, 6528-6539
   Abstract »    Full Text »    PDF »
MD simulations of ligand-bound and ligand-free aptamer: Molecular level insights into the binding and switching mechanism of the add A-riboswitch.
M. Sharma, G. Bulusu, and A. Mitra (2009)
RNA 15, 1673-1692
   Abstract »    Full Text »    PDF »
Riboswitch RNAs: using RNA to sense cellular metabolism.
T. M. Henkin (2008)
Genes & Dev. 22, 3383-3390
   Abstract »    Full Text »    PDF »
S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum.
G. Andre, S. Even, H. Putzer, P. Burguiere, C. Croux, A. Danchin, I. Martin-Verstraete, and O. Soutourina (2008)
Nucleic Acids Res. 36, 5955-5969
   Abstract »    Full Text »    PDF »
The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
Z. Weinberg, E. E. Regulski, M. C. Hammond, J. E. Barrick, Z. Yao, W. L. Ruzzo, and R. R. Breaker (2008)
RNA 14, 822-828
   Abstract »    Full Text »    PDF »
Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria.
M. M. Meyer, A. Roth, S. M. Chervin, G. A. Garcia, and R. R. Breaker (2008)
RNA 14, 685-695
   Abstract »    Full Text »    PDF »
Natural Variability in S-Adenosylmethionine (SAM)-Dependent Riboswitches: S-Box Elements in Bacillus subtilis Exhibit Differential Sensitivity to SAM In Vivo and In Vitro.
J. Tomsic, B. A. McDaniel, F. J. Grundy, and T. M. Henkin (2008)
J. Bacteriol. 190, 823-833
   Abstract »    Full Text »    PDF »
Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
O. M. Ottink, S. M. Rampersad, M. Tessari, G. J.R. Zaman, H. A. Heus, and S. S. Wijmenga (2007)
RNA 13, 2202-2212
   Abstract »    Full Text »    PDF »
Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
J. N. Kim, A. Roth, and R. R. Breaker (2007)
PNAS 104, 16092-16097
   Abstract »    Full Text »    PDF »
Control of Methionine Synthesis and Uptake by MetR and Homocysteine in Streptococcus mutans.
B. Sperandio, C. Gautier, S. McGovern, D. S. Ehrlich, P. Renault, I. Martin-Verstraete, and E. Guedon (2007)
J. Bacteriol. 189, 7032-7044
   Abstract »    Full Text »    PDF »
Ligand recognition determinants of guanine riboswitches.
J. Mulhbacher and D. A. Lafontaine (2007)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
S. Blouin and D. A. Lafontaine (2007)
RNA 13, 1256-1267
   Abstract »    Full Text »    PDF »
Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis.
R. Welz and R. R. Breaker (2007)
RNA 13, 573-582
   Abstract »    Full Text »    PDF »
S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA.
R. T. Fuchs, F. J. Grundy, and T. M. Henkin (2007)
PNAS 104, 4876-4880
   Abstract »    Full Text »    PDF »
Core requirements of the adenine riboswitch aptamer for ligand binding.
J.-F. Lemay and D. A. Lafontaine (2007)
RNA 13, 339-350
   Abstract »    Full Text »    PDF »
Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection.
K. H. Link, L. Guo, and R. R. Breaker (2006)
Nucleic Acids Res. 34, 4968-4975
   Abstract »    Full Text »    PDF »
Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions.
N. Sudarsan, M. C. Hammond, K. F. Block, R. Welz, J. E. Barrick, A. Roth, and R. R. Breaker (2006)
Science 314, 300-304
   Abstract »    Full Text »    PDF »
The Global Regulator Spx Functions in the Control of Organosulfur Metabolism in Bacillus subtilis.
S.-Y. Choi, D. Reyes, M. Leelakriangsak, and P. Zuber (2006)
J. Bacteriol. 188, 5741-5751
   Abstract »    Full Text »    PDF »
Identification of a Mutation in the Bacillus subtilis S-Adenosylmethionine Synthetase Gene That Results in Derepression of S-Box Gene Expression.
B. A. McDaniel, F. J. Grundy, V. P. Kurlekar, J. Tomsic, and T. M. Henkin (2006)
J. Bacteriol. 188, 3674-3681
   Abstract »    Full Text »    PDF »
In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli..
B. L. LaMonte and J. A. Hughes (2006)
Microbiology 152, 1451-1459
   Abstract »    Full Text »    PDF »
Predicting cis-acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups.
M. Wels, C. Francke, R. Kerkhoven, M. Kleerebezem, and R. J. Siezen (2006)
Nucleic Acids Res. 34, 1947-1958
   Abstract »    Full Text »    PDF »
Global Control of Cysteine Metabolism by CymR in Bacillus subtilis.
S. Even, P. Burguiere, S. Auger, O. Soutourina, A. Danchin, and I. Martin-Verstraete (2006)
J. Bacteriol. 188, 2184-2197
   Abstract »    Full Text »    PDF »
Sensing Metabolic Signals with Nascent RNA Transcripts: The T Box and S Box Riboswitches as Paradigms.
T.M. HENKIN and F.J. GRUNDY (2006)
Cold Spring Harb Symp Quant Biol 71, 231-237
   Abstract »    PDF »
Structural Studies of the Purine and SAM Binding Riboswitches.
Cold Spring Harb Symp Quant Biol 71, 259-268
   Abstract »    PDF »
Bacillus subtilis Cysteine Synthetase Is a Global Regulator of the Expression of Genes Involved in Sulfur Assimilation.
D. Albanesi, M. C. Mansilla, G. E. Schujman, and D. de Mendoza (2005)
J. Bacteriol. 187, 7631-7638
   Abstract »    Full Text »    PDF »
Regulation of the Bacillus subtilis ytmI Operon, Involved in Sulfur Metabolism.
P. Burguiere, J. Fert, I. Guillouard, S. Auger, A. Danchin, and I. Martin-Verstraete (2005)
J. Bacteriol. 187, 6019-6030
   Abstract »    Full Text »    PDF »
Sulfur Amino Acid Metabolism and Its Control in Lactococcus lactis IL1403.
B. Sperandio, P. Polard, D. S. Ehrlich, P. Renault, and E. Guedon (2005)
J. Bacteriol. 187, 3762-3778
   Abstract »    Full Text »    PDF »
Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems.
D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, and M. S. Gelfand (2004)
Nucleic Acids Res. 32, 3340-3353
   Abstract »    Full Text »    PDF »
A nascent polypeptide domain that can regulate translation elongation.
P. Fang, C. C. Spevak, C. Wu, and M. S. Sachs (2004)
PNAS 101, 4059-4064
   Abstract »    Full Text »    PDF »
Functional Genomics of Gram-Positive Microorganisms.
M. Perego, J. A. Hoch, and J. F. Barrett (2004)
J. Bacteriol. 186, 903-909
   Full Text »    PDF »
Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress.
J. Mostertz, C. Scharf, M. Hecker, and G. Homuth (2004)
Microbiology 150, 497-512
   Abstract »    Full Text »    PDF »
Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?.
D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, and M. S. Gelfand (2003)
Nucleic Acids Res. 31, 6748-6757
   Abstract »    Full Text »    PDF »
Temperature-controlled Structural Alterations of an RNA Thermometer.
S. Chowdhury, C. Ragaz, E. Kreuger, and F. Narberhaus (2003)
J. Biol. Chem. 278, 47915-47921
   Abstract »    Full Text »    PDF »
An mRNA structure in bacteria that controls gene expression by binding lysine.
N. Sudarsan, J. K. Wickiser, S. Nakamura, M. S. Ebert, and R. R. Breaker (2003)
Genes & Dev. 17, 2688-2697
   Abstract »    Full Text »    PDF »
The L box regulon: Lysine sensing by leader RNAs of bacterial lysine biosynthesis genes.
F. J. Grundy, S. C. Lehman, and T. M. Henkin (2003)
PNAS 100, 12057-12062
   Abstract »    Full Text »    PDF »
RNA sensors: novel regulators of gene expression.
R. Kaempfer (2003)
EMBO Rep. 4, 1043-1047
   Abstract »    Full Text »    PDF »
Definition of a Second Bacillus subtilis pur Regulon Comprising the pur and xpt-pbuX Operons plus pbuG, nupG (yxjA), and pbuE (ydhL).
L. E. Johansen, P. Nygaard, C. Lassen, Y. Agerso, and H. H. Saxild (2003)
J. Bacteriol. 185, 5200-5209
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882