Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 100 (9): 5211-5216

Copyright © 2003 by the National Academy of Sciences.


Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis

Robert A. Screaton*, Stephan Kiessling*, Owen J. Sansom{dagger}, Catherine B. Millar{ddagger}, Kathryn Maddison{dagger}, Adrian Bird{ddagger}, Alan R. Clarke{dagger}, and Steven M. Frisch*,§

*The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037; {dagger}Cardiff School of Biosciences, Cardiff University, P.O. Box 911, Cardiff CF10 3US, United Kingdom; and {ddagger}Wellcome Trust Centre for Cell Biology, The King's Buildings, Edinburgh University, Edinburgh EH9 3JR, United Kingdom

Accepted for publication February 28, 2003.

Received for publication January 22, 2003.

Abstract: Fas-associated death domain protein (FADD) is an adaptor protein bridging death receptors with initiator caspases. Thus, its function and localization are assumed to be cytoplasmic, although the localization of endogenous FADD has not been reported. Surprisingly, the data presented here demonstrate that FADD is mainly nuclear in several adherent cell lines. Its accumulation in the nucleus and export to the cytoplasm required the phosphorylation site Ser-194, which was also required for its interaction with the nucleocytoplasmic shuttling protein exportin-5. Within the nucleus, FADD interacted with the methyl-CpG binding domain protein 4 (MBD4), which excises thymine from GT mismatches in methylated regions of chromatin. The MBD4-interacting mismatch repair factor MLH1 was also found in a complex with FADD. The FADD–MBD4 interaction involved the death effector domain of FADD and a region of MBD4 adjacent to the glycosylase domain. The FADD-binding region of MBD4 was downstream of a frameshift mutation that occurs in a significant fraction of human colorectal carcinomas. Consistent with the idea that MBD4 can signal to an apoptotic effector, MBD4 regulated DNA damage-, Fas ligand-, and cell detachment-induced apoptosis. The nuclear localization of FADD and its interaction with a genome surveillance/DNA repair protein that can regulate apoptosis suggests a novel function of FADD distinct from direct participation in death receptor signaling complexes.

§ To whom correspondence should be addressed. E-mail: sfrisch{at}

Communicated by Erkki Ruoslahti, The Burnham Institute, La Jolla, CA

Pin1-FADD Interactions Regulate Fas-Mediated Apoptosis in Activated Eosinophils.
J. Oh and J. S. Malter (2013)
J. Immunol. 190, 4937-4945
   Abstract »    Full Text »    PDF »
Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA.
S. Morera, I. Grin, A. Vigouroux, S. Couve, V. Henriot, M. Saparbaev, and A. A. Ishchenko (2012)
Nucleic Acids Res. 40, 9917-9926
   Abstract »    Full Text »    PDF »
Peptidylarginine Deiminase Type 4 and Methyl-CpG Binding Domain 4 Polymorphisms in Chinese Patients with Rheumatoid Arthritis.
J. CHENG, H. ZHANG, C. ZHUANG, and R. LIU (2012)
J Rheumatol 39, 1159-1165
   Abstract »    Full Text »    PDF »
Fas-associated death domain protein and adenosine partnership: fad in RA.
V. Vilmont, L. Tourneur, and G. Chiocchia (2012)
Rheumatology 51, 964-975
   Abstract »    Full Text »    PDF »
Recognition of methylated DNA through methyl-CpG binding domain proteins.
X. Zou, W. Ma, I. A. Solov'yov, C. Chipot, and K. Schulten (2012)
Nucleic Acids Res. 40, 2747-2758
   Abstract »    Full Text »    PDF »
MBD 4--a potential substrate for protein kinase X.
Y. Lin and W. Li (2011)
Acta Biochim Biophys Sin 43, 916-917
   Full Text »    PDF »
The Roles of the Methyl-CpG Binding Proteins in Cancer.
L. Parry and A. R. Clarke (2011)
Genes & Cancer 2, 618-630
   Abstract »    Full Text »    PDF »
Characterization of the Extrinsic Apoptotic Pathway in the Basal Chordate Amphioxus.
S. Yuan, H. Liu, M. Gu, L. Xu, S. Huang, Z. Ren, and A. Xu (2010)
Science Signaling 3, ra66
   Abstract »    Full Text »    PDF »
Interaction of Double-stranded RNA-dependent Protein Kinase (PKR) with the Death Receptor Signaling Pathway in Amyloid {beta} (A{beta})-treated Cells and in APPSLPS1 Knock-in Mice.
J. Couturier, M. Morel, R. Pontcharraud, V. Gontier, B. Fauconneau, M. Paccalin, and G. Page (2010)
J. Biol. Chem. 285, 1272-1282
   Abstract »    Full Text »    PDF »
Activation of Inflammasomes Requires Intracellular Redistribution of the Apoptotic Speck-Like Protein Containing a Caspase Recruitment Domain.
N. B. Bryan, A. Dorfleutner, Y. Rojanasakul, and C. Stehlik (2009)
J. Immunol. 182, 3173-3182
   Abstract »    Full Text »    PDF »
Adenosine Receptors Control a New Pathway of Fas-associated Death Domain Protein Expression Regulation by Secretion.
L. Tourneur, S. Mistou, A. Schmitt, and G. Chiocchia (2008)
J. Biol. Chem. 283, 17929-17938
   Abstract »    Full Text »    PDF »
Constitutive Phosphorylation Mutation in Fas-associated Death Domain (FADD) Results in Early Cell Cycle Defects.
S. L. Osborn, S. J. Sohn, and A. Winoto (2007)
J. Biol. Chem. 282, 22786-22792
   Abstract »    Full Text »    PDF »
Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients.
E. Balada, J. Ordi-Ros, S. Serrano-Acedo, L. Martinez-Lostao, and M. Vilardell-Tarres (2007)
J. Leukoc. Biol. 81, 1609-1616
   Abstract »    Full Text »    PDF »
Glu346Lys Polymorphism in the Methyl-CpG Binding Domain 4 Gene and the Risk of Primary Lung Cancer.
M. C. Shin, S. J. Lee, J. E. Choi, S. I. Cha, C. H. Kim, W. K. Lee, S. Kam, Y. M. Kang, T. H. Jung, and J. Y. Park (2006)
Jpn. J. Clin. Oncol. 36, 483-488
   Abstract »    Full Text »    PDF »
The role of receptor internalization in CD95 signaling.
K.-H. Lee, C. Feig, V. Tchikov, R. Schickel, C. Hallas, S. Schutze, M. E. Peter, and A. C. Chan (2006)
EMBO J. 25, 1009-1023
   Abstract »    Full Text »    PDF »
MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10.
M. Nakagawa, Y. Hosokawa, M. Yonezumi, K. Izumiyama, R. Suzuki, S. Tsuzuki, M. Asaka, and M. Seto (2005)
Blood 106, 4210-4216
   Abstract »    Full Text »    PDF »
Phosphorylated FADD induces NF-{kappa}B, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas.
G. Chen, M. S. Bhojani, A. C. Heaford, D. C. Chang, B. Laxman, D. G. Thomas, L. B. Griffin, J. Yu, J. M. Coppola, T. J. Giordano, et al. (2005)
PNAS 102, 12507-12512
   Abstract »    Full Text »    PDF »
Functional Role of Death-associated Protein 3 (DAP3) in Anoikis.
T. Miyazaki, M. Shen, D. Fujikura, N. Tosa, H.-R. Kim, S. Kon, T. Uede, and J. C. Reed (2004)
J. Biol. Chem. 279, 44667-44672
   Abstract »    Full Text »    PDF »
Nucleocytoplasmic Shuttling of Receptor-interacting Protein 3 (RIP3): IDENTIFICATION OF NOVEL NUCLEAR EXPORT AND IMPORT SIGNALS IN RIP3.
Y. Yang, J. Ma, Y. Chen, and M. Wu (2004)
J. Biol. Chem. 279, 38820-38829
   Abstract »    Full Text »    PDF »
Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis.
K. Shimada, S. Matsuyoshi, M. Nakamura, E. Ishida, M. Kishi, and N. Konishi (2004)
Carcinogenesis 25, 1089-1097
   Abstract »    Full Text »    PDF »
Identification of Genetic Variants in Base Excision Repair Pathway and Their Associations with Risk of Esophageal Squamous Cell Carcinoma.
B. Hao, H. Wang, K. Zhou, Y. Li, X. Chen, G. Zhou, Y. Zhu, X. Miao, W. Tan, Q. Wei, et al. (2004)
Cancer Res. 64, 4378-4384
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor Alpha-Induced Apoptosis Requires p73 and c-ABL Activation Downstream of RB Degradation.
B. N. Chau, T.-T. Chen, Y. Y. Wan, J. DeGregori, and J. Y. J. Wang (2004)
Mol. Cell. Biol. 24, 4438-4447
   Abstract »    Full Text »    PDF »
MED1: A central molecule for maintenance of genome integrity and response to DNA damage.
B. L. Parsons (2003)
PNAS 100, 14601-14602
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882