Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 101 (13): 4701-4705

Copyright © 2004 by the National Academy of Sciences.

From The Cover

Plant Biology

A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning

Raka M. Mitra *, Cynthia A. Gleason {dagger}, Anne Edwards {dagger}, James Hadfield {dagger}, J. Allan Downie {dagger}, Giles E. D. Oldroyd {dagger}, and Sharon R. Long * {ddagger}

*Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020; and {dagger}John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom

Contributed by Sharon R. Long, January 27, 2004

Abstract: In the establishment of the legume-rhizobial symbiosis, bacterial lipochitooligosaccharide signaling molecules termed Nod factors activate the formation of a novel root organ, the nodule. Nod factors elicit several responses in plant root hair cells, including oscillations in cytoplasmic calcium levels (termed calcium spiking) and alterations in root hair growth. A number of plant mutants with defects in the Nod factor signaling pathway have been identified. One such Medicago truncatula mutant, dmi3, exhibits calcium spiking and root hair swelling in response to Nod factor, but fails to initiate symbiotic gene expression or cell divisions for nodule formation. On the basis of these data, it is thought that the dmi3 mutant perceives Nod factor but fails to transduce the signal downstream of calcium spiking. Additionally, the dmi3 mutant is defective in the symbiosis with mycorrhizal fungi, indicating the importance of the encoded protein in multiple symbioses. We report the identification of the DMI3 gene, using a gene cloning method based on transcript abundance. We show that transcript-based cloning is a valid approach for cloning genes in barley, indicating the value of this technology in crop plants. DMI3 encodes a calcium/calmodulin-dependent protein kinase. Mutants in pea sym9 have phenotypes similar to dmi3 and have alterations in this gene. The DMI3 class of proteins is well conserved among plants that interact with mycorrhizal fungi, but it is less conserved in Arabidopsis thaliana, which does not participate in the mycorrhizal symbiosis.

Abbreviations: CaM, calmodulin; CaMKII, calcium/CaM-dependent kinase II; CCaMK, calcium/CaM-dependent protein kinase; TCs, tentative consensus sequences.

Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession no. AY496049 for M. truncatula DMI3) and in the European Molecular Biology Laboratory database (accession no. AJ621916 for P. sativum SYM9).

See Commentary on page 4339.

{ddagger} To whom correspondence should be addressed. E-mail: srl{at}

Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.
C. Rogers and G. E. D. Oldroyd (2014)
J. Exp. Bot. 65, 1939-1946
   Abstract »    Full Text »    PDF »
Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation.
T. Kojima, K. Saito, H. Oba, Y. Yoshida, J. Terasawa, Y. Umehara, N. Suganuma, M. Kawaguchi, and R. Ohtomo (2014)
Plant Cell Physiol.
   Abstract »    Full Text »    PDF »
The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection.
P. Laporte, A. Lepage, J. Fournier, O. Catrice, S. Moreau, M.-F. Jardinaud, J.-H. Mun, E. Larrainzar, D. R. Cook, P. Gamas, et al. (2014)
J. Exp. Bot. 65, 481-494
   Abstract »    Full Text »    PDF »
Lotus japonicus Cytokinin Receptors Work Partially Redundantly to Mediate Nodule Formation.
M. Held, H. Hou, M. Miri, C. Huynh, L. Ross, M. S. Hossain, S. Sato, S. Tabata, J. Perry, T. L. Wang, et al. (2014)
PLANT CELL 26, 678-694
   Abstract »    Full Text »    PDF »
Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling.
J. B. Miller, A. Pratap, A. Miyahara, L. Zhou, S. Bornemann, R. J. Morris, and G. E. D. Oldroyd (2013)
PLANT CELL 25, 5053-5066
   Abstract »    Full Text »    PDF »
Nuclear Calcium Signaling in Plants.
M. Charpentier and G. E. D. Oldroyd (2013)
Plant Physiology 163, 496-503
   Full Text »    PDF »
Recent Advances in Calcium/Calmodulin-Mediated Signaling with an Emphasis on Plant-Microbe Interactions.
B. W. Poovaiah, L. Du, H. Wang, and T. Yang (2013)
Plant Physiology 163, 531-542
   Full Text »    PDF »
Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling.
N. J. Roberts, G. Morieri, G. Kalsi, A. Rose, J. Stiller, A. Edwards, F. Xie, P. M. Gresshoff, G. E. D. Oldroyd, J. A. Downie, et al. (2013)
Plant Physiology 161, 556-567
   Abstract »    Full Text »    PDF »
Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations.
E. Granqvist, D. Wysham, S. Hazledine, W. Kozlowski, J. Sun, M. Charpentier, T. V. Martins, P. Haleux, K. Tsaneva-Atanasova, J. A. Downie, et al. (2012)
Plant Physiology 160, 2300-2310
   Abstract »    Full Text »    PDF »
Medicago truncatula ERN Transcription Factors: Regulatory Interplay with NSP1/NSP2 GRAS Factors and Expression Dynamics throughout Rhizobial Infection.
M. R. Cerri, L. Frances, T. Laloum, M.-C. Auriac, A. Niebel, G. E. D. Oldroyd, D. G. Barker, J. Fournier, and F. de Carvalho-Niebel (2012)
Plant Physiology 160, 2155-2172
   Abstract »    Full Text »    PDF »
OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice.
B. Shi, L. Ni, A. Zhang, J. Cao, H. Zhang, T. Qin, M. Tan, J. Zhang, and M. Jiang (2012)
Mol Plant 5, 1359-1374
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum.
T. H. N. Nguyen, L. Brechenmacher, J. T. Aldrich, T. R. Clauss, M. A. Gritsenko, K. K. Hixson, M. Libault, K. Tanaka, F. Yang, Q. Yao, et al. (2012)
Mol. Cell. Proteomics 11, 1140-1155
   Abstract »    Full Text »    PDF »
A Ubiquitin Ligase of Symbiosis Receptor Kinase Involved in Nodule Organogenesis.
S. Yuan, H. Zhu, H. Gou, W. Fu, L. Liu, T. Chen, D. Ke, H. Kang, Q. Xie, Z. Hong, et al. (2012)
Plant Physiology 160, 106-117
   Abstract »    Full Text »    PDF »
Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize.
F. Ma, R. Lu, H. Liu, B. Shi, J. Zhang, M. Tan, A. Zhang, and M. Jiang (2012)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation.
C. I. Pislariu, J. D. Murray, J. Wen, V. Cosson, R. R. D. Muni, M. Wang, V. A. Benedito, A. Andriankaja, X. Cheng, I. T. Jerez, et al. (2012)
Plant Physiology 159, 1686-1699
   Abstract »    Full Text »    PDF »
WUSCHEL-RELATED HOMEOBOX5 Gene Expression and Interaction of CLE Peptides with Components of the Systemic Control Add Two Pieces to the Puzzle of Autoregulation of Nodulation.
M. A. Osipova, V. Mortier, K. N. Demchenko, V. E. Tsyganov, I. A. Tikhonovich, L. A. Lutova, E. A. Dolgikh, and S. Goormachtig (2012)
Plant Physiology 158, 1329-1341
   Abstract »    Full Text »    PDF »
A Phylogenetic Strategy Based on a Legume-Specific Whole Genome Duplication Yields Symbiotic Cytokinin Type-A Response Regulators.
R. H. M. Op den Camp, S. De Mita, A. Lillo, Q. Cao, E. Limpens, T. Bisseling, and R. Geurts (2011)
Plant Physiology 157, 2013-2022
   Abstract »    Full Text »    PDF »
Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2.
W. Liu, W. Kohlen, A. Lillo, R. Op den Camp, S. Ivanov, M. Hartog, E. Limpens, M. Jamil, C. Smaczniak, K. Kaufmann, et al. (2011)
PLANT CELL 23, 3853-3865
   Abstract »    Full Text »    PDF »
The ROOT DETERMINED NODULATION1 Gene Regulates Nodule Number in Roots of Medicago truncatula and Defines a Highly Conserved, Uncharacterized Plant Gene Family.
E. L. Schnabel, T. K. Kassaw, L. S. Smith, J. F. Marsh, G. E. Oldroyd, S. R. Long, and J. A. Frugoli (2011)
Plant Physiology 157, 328-340
   Abstract »    Full Text »    PDF »
Symbiotic Rhizobia Bacteria Trigger a Change in Localization and Dynamics of the Medicago truncatula Receptor Kinase LYK3.
C. H. Haney, B. K. Riely, D. M. Tricoli, D. R. Cook, D. W. Ehrhardt, and S. R. Long (2011)
PLANT CELL 23, 2774-2787
   Abstract »    Full Text »    PDF »
Phenotypic and Genomic Analyses of a Fast Neutron Mutant Population Resource in Soybean.
Y.-T. Bolon, W. J. Haun, W. W. Xu, D. Grant, M. G. Stacey, R. T. Nelson, D. J. Gerhardt, J. A. Jeddeloh, G. Stacey, G. J. Muehlbauer, et al. (2011)
Plant Physiology 156, 240-253
   Abstract »    Full Text »    PDF »
A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in Lotus japonicus.
H. Kang, H. Zhu, X. Chu, Z. Yang, S. Yuan, D. Yu, C. Wang, Z. Hong, and Z. Zhang (2011)
Plant Physiology 155, 1312-1324
   Abstract »    Full Text »    PDF »
plenty, a Novel Hypernodulation Mutant in Lotus japonicus.
C. Yoshida, S. Funayama-Noguchi, and M. Kawaguchi (2010)
Plant Cell Physiol. 51, 1425-1435
   Abstract »    Full Text »    PDF »
The Compact Root Architecture1 Gene Regulates Lignification, Flavonoid Production, and Polar Auxin Transport in Medicago truncatula.
C. Laffont, S. Blanchet, C. Lapierre, L. Brocard, P. Ratet, M. Crespi, U. Mathesius, and F. Frugier (2010)
Plant Physiology 153, 1597-1607
   Abstract »    Full Text »    PDF »
NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development.
M. Groth, N. Takeda, J. Perry, H. Uchida, S. Draxl, A. Brachmann, S. Sato, S. Tabata, M. Kawaguchi, T. L. Wang, et al. (2010)
PLANT CELL 22, 2509-2526
   Abstract »    Full Text »    PDF »
A Nodule-Specific Protein Secretory Pathway Required for Nitrogen-Fixing Symbiosis.
D. Wang, J. Griffitts, C. Starker, E. Fedorova, E. Limpens, S. Ivanov, T. Bisseling, and S. Long (2010)
Science 327, 1126-1129
   Abstract »    Full Text »    PDF »
Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of Sesbania rostrata.
W. Capoen, J. Den Herder, J. Sun, C. Verplancke, A. De Keyser, R. De Rycke, S. Goormachtig, G. Oldroyd, and M. Holsters (2009)
PLANT CELL 21, 1526-1540
   Abstract »    Full Text »    PDF »
GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula.
S. Hirsch, J. Kim, A. Munoz, A. B. Heckmann, J. A. Downie, and G. E.D. Oldroyd (2009)
PLANT CELL 21, 545-557
   Abstract »    Full Text »    PDF »
Nod Factor/Nitrate-Induced CLE Genes that Drive HAR1-Mediated Systemic Regulation of Nodulation.
S. Okamoto, E. Ohnishi, S. Sato, H. Takahashi, M. Nakazono, S. Tabata, and M. Kawaguchi (2009)
Plant Cell Physiol. 50, 67-77
   Abstract »    Full Text »    PDF »
Rearrangement of Actin Cytoskeleton Mediates Invasion of Lotus japonicus Roots by Mesorhizobium loti.
K. Yokota, E. Fukai, L. H. Madsen, A. Jurkiewicz, P. Rueda, S. Radutoiu, M. Held, M. S. Hossain, K. Szczyglowski, G. Morieri, et al. (2009)
PLANT CELL 21, 267-284
   Abstract »    Full Text »    PDF »
Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants.
C. Chen, C. Fan, M. Gao, and H. Zhu (2009)
Plant Physiology 149, 306-317
   Abstract »    Full Text »    PDF »
CYCLOPS, a mediator of symbiotic intracellular accommodation.
K. Yano, S. Yoshida, J. Muller, S. Singh, M. Banba, K. Vickers, K. Markmann, C. White, B. Schuller, S. Sato, et al. (2008)
PNAS 105, 20540-20545
   Abstract »    Full Text »    PDF »
De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis.
M. Crespi and F. Frugier (2008)
Science Signaling 1, re11
   Abstract »    Full Text »    PDF »
Arbuscular Mycorrhiza-Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway.
C. Gutjahr, M. Banba, V. Croset, K. An, A. Miyao, G. An, H. Hirochika, H. Imaizumi-Anraku, and U. Paszkowski (2008)
PLANT CELL 20, 2989-3005
   Abstract »    Full Text »    PDF »
Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes.
S. Kosuta, S. Hazledine, J. Sun, H. Miwa, R. J. Morris, J. A. Downie, and G. E. D. Oldroyd (2008)
PNAS 105, 9823-9828
   Abstract »    Full Text »    PDF »
3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase1 Interacts with NORK and Is Crucial for Nodulation in Medicago truncatula.
Z. Kevei, G. Lougnon, P. Mergaert, G. V. Horvath, A. Kereszt, D. Jayaraman, N. Zaman, F. Marcel, K. Regulski, G. B. Kiss, et al. (2007)
PLANT CELL 19, 3974-3989
   Abstract »    Full Text »    PDF »
Fungal Symbiosis in Rice Requires an Ortholog of a Legume Common Symbiosis Gene Encoding a Ca2+/Calmodulin-Dependent Protein Kinase.
C. Chen, M. Gao, J. Liu, and H. Zhu (2007)
Plant Physiology 145, 1619-1628
   Abstract »    Full Text »    PDF »
AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif.
A. Andriankaja, A. Boisson-Dernier, L. Frances, L. Sauviac, A. Jauneau, D. G. Barker, and F. de Carvalho-Niebel (2007)
PLANT CELL 19, 2866-2885
   Abstract »    Full Text »    PDF »
A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells.
L. Navazio, R. Moscatiello, A. Genre, M. Novero, B. Baldan, P. Bonfante, and P. Mariani (2007)
Plant Physiology 144, 673-681
   Abstract »    Full Text »    PDF »
Mastoparan Activates Calcium Spiking Analogous to Nod Factor-Induced Responses in Medicago truncatula Root Hair Cells.
J. Sun, H. Miwa, J. A. Downie, and G. E.D. Oldroyd (2007)
Plant Physiology 144, 695-702
   Abstract »    Full Text »    PDF »
An IRE-Like AGC Kinase Gene, MtIRE, Has Unique Expression in the Invasion Zone of Developing Root Nodules in Medicago truncatula.
C. I. Pislariu and R. Dickstein (2007)
Plant Physiology 144, 682-694
   Abstract »    Full Text »    PDF »
Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants.
A. P. Gultyaev and A. Roussis (2007)
Nucleic Acids Res. 35, 3144-3152
   Abstract »    Full Text »    PDF »
Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase.
J. F. Marsh, A. Rakocevic, R. M. Mitra, L. Brocard, J. Sun, A. Eschstruth, S. R. Long, M. Schultze, P. Ratet, and G. E.D. Oldroyd (2007)
Plant Physiology 144, 324-335
   Abstract »    Full Text »    PDF »
An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction.
P. H. Middleton, J. Jakab, R. V. Penmetsa, C. G. Starker, J. Doll, P. Kalo, R. Prabhu, J. F. Marsh, R. M. Mitra, A. Kereszt, et al. (2007)
PLANT CELL 19, 1221-1234
   Abstract »    Full Text »    PDF »
NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus.
K. Saito, M. Yoshikawa, K. Yano, H. Miwa, H. Uchida, E. Asamizu, S. Sato, S. Tabata, H. Imaizumi-Anraku, Y. Umehara, et al. (2007)
PLANT CELL 19, 610-624
   Abstract »    Full Text »    PDF »
Lotus japonicus Nodulation Requires Two GRAS Domain Regulators, One of Which Is Functionally Conserved in a Non-Legume.
A. B. Heckmann, F. Lombardo, H. Miwa, J. A. Perry, S. Bunnewell, M. Parniske, T. L. Wang, and J. A. Downie (2006)
Plant Physiology 142, 1739-1750
   Abstract »    Full Text »    PDF »
The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes.
J.-F. Arrighi, A. Barre, B. Ben Amor, A. Bersoult, L. C. Soriano, R. Mirabella, F. de Carvalho-Niebel, E.-P. Journet, M. Gherardi, T. Huguet, et al. (2006)
Plant Physiology 142, 265-279
   Abstract »    Full Text »    PDF »
Recruitment of Novel Calcium-Binding Proteins for Root Nodule Symbiosis in Medicago truncatula.
J. Liu, S. S. Miller, M. Graham, B. Bucciarelli, C. M. Catalano, D. J. Sherrier, D. A. Samac, S. Ivashuta, M. Fedorova, P. Matsumoto, et al. (2006)
Plant Physiology 141, 167-177
   Abstract »    Full Text »    PDF »
Tracing Nonlegume Orthologs of Legume Genes Required for Nodulation and Arbuscular Mycorrhizal Symbioses.
H. Zhu, B. K. Riely, N. J. Burns, and J.-M. Ane (2006)
Genetics 172, 2491-2499
   Abstract »    Full Text »    PDF »
The DMI1 and DMI2 Early Symbiotic Genes of Medicago truncatula Are Required for a High-Affinity Nodulation Factor-Binding Site Associated to a Particulate Fraction of Roots.
B. V. Hogg, J. V. Cullimore, R. Ranjeva, and J.-J. Bono (2006)
Plant Physiology 140, 365-373
   Abstract »    Full Text »    PDF »
Transcript Analysis of Early Nodulation Events in Medicago truncatula.
D. P. Lohar, N. Sharopova, G. Endre, S. Penuela, D. Samac, C. Town, K. A.T. Silverstein, and K. A. VandenBosch (2006)
Plant Physiology 140, 221-234
   Abstract »    Full Text »    PDF »
The Arabidopsis genome: A foundation for plant research.
M. Bevan and S. Walsh (2005)
Genome Res. 15, 1632-1642
   Abstract »    Full Text »    PDF »
Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection.
A. Genre, M. Chabaud, T. Timmers, P. Bonfante, and D. G. Barker (2005)
PLANT CELL 17, 3489-3499
   Abstract »    Full Text »    PDF »
RNA Interference Identifies a Calcium-Dependent Protein Kinase Involved in Medicago truncatula Root Development.
S. Ivashuta, J. Liu, J. Liu, D. P. Lohar, S. Haridas, B. Bucciarelli, K. A. VandenBosch, C. P. Vance, M. J. Harrison, and J. S. Gantt (2005)
PLANT CELL 17, 2911-2921
   Abstract »    Full Text »    PDF »
Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms.
A. O. Ovtsyna, E. A. Dolgikh, A. S. Kilanova, V. E. Tsyganov, A. Y. Borisov, I. A. Tikhonovich, and C. Staehelin (2005)
Plant Physiology 139, 1051-1064
   Abstract »    Full Text »    PDF »
Pseudomonas fluorescens and Glomus mosseae Trigger DMI3-Dependent Activation of Genes Related to a Signal Transduction Pathway in Roots of Medicago truncatula.
L. Sanchez, S. Weidmann, C. Arnould, A. R. Bernard, S. Gianinazzi, and V. Gianinazzi-Pearson (2005)
Plant Physiology 139, 1065-1077
   Abstract »    Full Text »    PDF »
Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis.
C. Kistner, T. Winzer, A. Pitzschke, L. Mulder, S. Sato, T. Kaneko, S. Tabata, N. Sandal, J. Stougaard, K. J. Webb, et al. (2005)
PLANT CELL 17, 2217-2229
   Abstract »    Full Text »    PDF »
Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2.
E. Limpens, R. Mirabella, E. Fedorova, C. Franken, H. Franssen, T. Bisseling, and R. Geurts (2005)
PNAS 102, 10375-10380
   Abstract »    Full Text »    PDF »
PLANT SCIENCE: GRAS Genes and the Symbiotic Green Revolution.
M. K. Udvardi and W.-R. Scheible (2005)
Science 308, 1749-1750
   Abstract »    Full Text »    PDF »
Nodulation Signaling in Legumes Requires NSP2, a Member of the GRAS Family of Transcriptional Regulators.
P. Kalo, C. Gleason, A. Edwards, J. Marsh, R. M. Mitra, S. Hirsch, J. Jakab, S. Sims, S. R. Long, J. Rogers, et al. (2005)
Science 308, 1786-1789
   Abstract »    Full Text »    PDF »
NSP1 of the GRAS Protein Family Is Essential for Rhizobial Nod Factor-Induced Transcription.
P. Smit, J. Raedts, V. Portyanko, F. Debelle, C. Gough, T. Bisseling, and R. Geurts (2005)
Science 308, 1789-1791
   Abstract »    Full Text »    PDF »
The Sulfate Transporter SST1 Is Crucial for Symbiotic Nitrogen Fixation in Lotus japonicus Root Nodules.
L. Krusell, K. Krause, T. Ott, G. Desbrosses, U. Kramer, S. Sato, Y. Nakamura, S. Tabata, E. K. James, N. Sandal, et al. (2005)
PLANT CELL 17, 1625-1636
   Abstract »    Full Text »    PDF »
Peace Talks and Trade Deals. Keys to Long-Term Harmony in Legume-Microbe Symbioses.
G. E.D. Oldroyd, M. J. Harrison, and M. Udvardi (2005)
Plant Physiology 137, 1205-1210
   Full Text »    PDF »
Characterization of the Lotus japonicus Symbiotic Mutant lot1 That Shows a Reduced Nodule Number and Distorted Trichomes.
Y. Ooki, M. Banba, K. Yano, J. Maruya, S. Sato, S. Tabata, K. Saeki, M. Hayashi, M. Kawaguchi, K. Izui, et al. (2005)
Plant Physiology 137, 1261-1271
   Abstract »    Full Text »    PDF »
Towards an understanding of photosynthetic acclimation.
R. G. Walters (2005)
J. Exp. Bot. 56, 435-447
   Abstract »    Full Text »    PDF »
Pharmacological Evidence That Multiple Phospholipid Signaling Pathways Link Rhizobium Nodulation Factor Perception in Medicago truncatula Root Hairs to Intracellular Responses, Including Ca2+ Spiking and Specific ENOD Gene Expression.
D. Charron, J.-L. Pingret, M. Chabaud, E.-P. Journet, and D. G. Barker (2004)
Plant Physiology 136, 3582-3593
   Abstract »    Full Text »    PDF »
Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana.
J.-M. Gong, D. A. Waner, T. Horie, S. L. Li, R. Horie, K. B. Abid, and J. I. Schroeder (2004)
PNAS 101, 15404-15409
   Abstract »    Full Text »    PDF »
Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis.
R. M. Mitra, S. L. Shaw, and S. R. Long (2004)
PNAS 101, 10217-10222
   Abstract »    Full Text »    PDF »
Unraveling the mystery of Nod factor signaling by a genomic approach in Medicago trunactula.
D. R. Cook (2004)
PNAS 101, 4339-4340
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882