Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 101 (20): 7554-7559

Copyright © 2004 by the National Academy of Sciences.


Selective inhibition of calcineurin-NFAT signaling by blocking protein–protein interaction with small organic molecules

Michael H. A. Roehrl *, {dagger} {ddagger}, Sunghyun Kang {ddagger}, §, ¶, José Aramburu ||, Gerhard Wagner *, **, Anjana Rao §, ¶, and Patrick G. Hogan ¶, **

Departments of *Biological Chemistry and Molecular Pharmacology and §Pathology, Harvard Medical School, Boston, MA 02115; {dagger}Ph.D. Program in Biological and Biomedical Sciences, Division of Medical Sciences, Faculty of Arts and Sciences, Harvard University, Boston, MA 02115; Center for Blood Research, 200 Longwood Avenue, Boston, MA 02115; and ||Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain

Communicated by Stephen C. Harrison, Harvard Medical School, Boston, MA, April 5, 2004

Received for publication October 31, 2003.

Abstract: Transient or reversible protein–protein interactions are commonly used to ensure efficient targeting of signaling enzymes to their cellular substrates. These interactions include direct binding to substrate, interaction with an accessory or scaffold protein, and positioning at subcellular locations in proximity to substrates. The existence of specialized targeting mechanisms raises the possibility of designing inhibitors that do not block enzyme activity per se, but rather interfere with targeting of the enzyme to one or more of its substrates within the cell. Here, we identify small organic molecules that specifically block targeting of the protein phosphatase calcineurin to its substrate nuclear factor of activated T cells (NFAT, also termed NFATc) and show that they are effective inhibitors of calcineurin-NFAT signaling.

Abbreviations: NFAT, nuclear factor of activated T cells; CsA, cyclosporin A; INCA, inhibitor of NFAT-calcineurin association; PMA, phorbol 12-myristate 13-acetate; TNF, tumor necrosis factor.

{ddagger} M.H.A.R. and S.K. contributed equally to this work.

** To whom correspondence may be addressed. E-mail: hogan{at} or gerhard_wagner{at}

The Role of the NFAT Signaling Pathway in Retinal Neovascularization.
C. A. Bretz, S. Savage, M. Capozzi, and J. S. Penn (2013)
Invest. Ophthalmol. Vis. Sci. 54, 7020-7027
   Abstract »    Full Text »    PDF »
Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair.
J. A. Stefater III, S. Rao, K. Bezold, A. C. Aplin, R. F. Nicosia, J. W. Pollard, N. Ferrara, and R. A. Lang (2013)
Blood 121, 2574-2578
   Abstract »    Full Text »    PDF »
Endorepellin Affects Angiogenesis by Antagonizing Diverse Vascular Endothelial Growth Factor Receptor 2 (VEGFR2)-evoked Signaling Pathways: TRANSCRIPTIONAL REPRESSION OF HYPOXIA-INDUCIBLE FACTOR 1{alpha} AND VEGFA AND CONCURRENT INHIBITION OF NUCLEAR FACTOR OF ACTIVATED T CELL 1 (NFAT1) ACTIVATION.
A. Goyal, C. Poluzzi, C. D. Willis, J. Smythies, A. Shellard, T. Neill, and R. V. Iozzo (2012)
J. Biol. Chem. 287, 43543-43556
   Abstract »    Full Text »    PDF »
Selective Modulation of Nuclear Factor of Activated T-Cell Function in Restenosis by a Potent Bipartite Peptide Inhibitor.
H. Yu, I. Bot, K. Sliedregt, X. Xu, M. Bot, S. H. van Heiningen, G. A. van der Marel, M. R. Bennett, H. Overkleeft, T. J. C. van Berkel, et al. (2012)
Circ. Res. 110, 200-210
   Abstract »    Full Text »    PDF »
Protein localization in disease and therapy.
M.-C. Hung and W. Link (2011)
J. Cell Sci. 124, 3381-3392
   Abstract »    Full Text »    PDF »
Calcineurin-dependent negative regulation of CD94/NKG2A expression on naive CD8+ T cells.
J.-H. Cho, H.-O. Kim, K. Webster, M. Palendira, B. Hahm, K.-S. Kim, C. King, S. G. Tangye, and J. Sprent (2011)
Blood 118, 116-128
   Abstract »    Full Text »    PDF »
Uridine 5'-Diphosphate Induces Chemokine Expression in Microglia and Astrocytes through Activation of the P2Y6 Receptor.
B. Kim, H.-k. Jeong, J.-h. Kim, S. Y. Lee, I. Jou, and E.-h. Joe (2011)
J. Immunol. 186, 3701-3709
   Abstract »    Full Text »    PDF »
Silencing calcineurin A subunit reduces SERCA2 expression in cardiac myocytes.
A. M. Prasad and G. Inesi (2011)
Am J Physiol Heart Circ Physiol 300, H173-H180
   Abstract »    Full Text »    PDF »
Lipin 1 Represses NFATc4 Transcriptional Activity in Adipocytes To Inhibit Secretion of Inflammatory Factors.
H. B. Kim, A. Kumar, L. Wang, G. H. Liu, S. R. Keller, J. C. Lawrence Jr., B. N. Finck, and T. E. Harris (2010)
Mol. Cell. Biol. 30, 3126-3139
   Abstract »    Full Text »    PDF »
Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway.
I. H. Cook, J. Evans, D. Maldonado-Perez, H. O. Critchley, K. J. Sales, and H. N. Jabbour (2010)
Mol. Hum. Reprod. 16, 158-169
   Abstract »    Full Text »    PDF »
RIAM Regulates the Cytoskeletal Distribution and Activation of PLC-{gamma}1 in T Cells.
N. Patsoukis, E. M. Lafuente, P. Meraner, J. s. Kim, D. Dombkowski, L. Li, and V. A. Boussiotis (2009)
Science Signaling 2, ra79
   Abstract »    Full Text »    PDF »
Targeting Protein Serine/Threonine Phosphatases for Drug Development.
J. L. McConnell and B. E. Wadzinski (2009)
Mol. Pharmacol. 75, 1249-1261
   Abstract »    Full Text »    PDF »
Inhibiting the Calcineurin-NFAT (Nuclear Factor of Activated T Cells) Signaling Pathway with a Regulator of Calcineurin-derived Peptide without Affecting General Calcineurin Phosphatase Activity.
M. C. Mulero, A. Aubareda, M. Orzaez, J. Messeguer, E. Serrano-Candelas, S. Martinez-Hoyer, A. Messeguer, E. Perez-Paya, and M. Perez-Riba (2009)
J. Biol. Chem. 284, 9394-9401
   Abstract »    Full Text »    PDF »
Scleraxis and NFATc Regulate the Expression of the Pro-{alpha}1(I) Collagen Gene in Tendon Fibroblasts.
V. Lejard, G. Brideau, F. Blais, R. Salingcarnboriboon, G. Wagner, M. H. A. Roehrl, M. Noda, D. Duprez, P. Houillier, and J. Rossert (2007)
J. Biol. Chem. 282, 17665-17675
   Abstract »    Full Text »    PDF »
Nuclear translocation of calcineurin Abeta but not calcineurin A{alpha} by platelet-derived growth factor in rat aortic smooth muscle.
R. I. Jabr, A. J. Wilson, M. H. Riddervold, A. H. Jenkins, B. A. Perrino, and L. H. Clapp (2007)
Am J Physiol Cell Physiol 292, C2213-C2225
   Abstract »    Full Text »    PDF »
Small Molecules, Big Players: the National Cancer Institute's Initiative for Chemical Genetics..
N. Tolliday, P. A. Clemons, P. Ferraiolo, A. N. Koehler, T. A. Lewis, X. Li, S. L. Schreiber, D. S. Gerhard, and S. Eliasof (2006)
Cancer Res. 66, 8935-8942
   Abstract »    Full Text »    PDF »
Activation of NFAT Signal In Vivo Leads to Osteopenia Associated with Increased Osteoclastogenesis and Bone-Resorbing Activity.
F. Ikeda, R. Nishimura, T. Matsubara, K. Hata, S. V. Reddy, and T. Yoneda (2006)
J. Immunol. 177, 2384-2390
   Abstract »    Full Text »    PDF »
Therapeutic Potential of a Synthetic Peptide Inhibitor of Nuclear Factor of Activated T Cells as Antirestenotic Agent.
H. Yu, K. Sliedregt-Bol, H. Overkleeft, G. A. van der Marel, T. J.C. van Berkel, and E. A.L. Biessen (2006)
Arterioscler Thromb Vasc Biol 26, 1531-1537
   Abstract »    Full Text »    PDF »
Blockade of NFAT Activation by the Second Calcineurin Binding Site.
S. Martinez-Martinez, A. Rodriguez, M. D. Lopez-Maderuelo, I. Ortega-Perez, J. Vazquez, and J. M. Redondo (2006)
J. Biol. Chem. 281, 6227-6235
   Abstract »    Full Text »    PDF »
Inhibition of the Calcineurin-NFAT Interaction by Small Organic Molecules Reflects Binding at an Allosteric Site.
S. Kang, H. Li, A. Rao, and P. G. Hogan (2005)
J. Biol. Chem. 280, 37698-37706
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882