Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 101 (44): 15718-15723

Copyright © 2004 by the National Academy of Sciences.


MEDICAL SCIENCES

The gut microbiota as an environmental factor that regulates fat storage

Fredrik Bäckhed *, {dagger} {ddagger}, Hao Ding {ddagger}, § ¶, Ting Wang ||, Lora V. Hooper {dagger} **, Gou Young Koh {dagger}{dagger}, Andras Nagy §, {ddagger}{ddagger}, Clay F. Semenkovich §§, and Jeffrey I. Gordon *, {dagger}, ¶¶

*Center for Genome Sciences and Departments of {dagger}Molecular Biology and Pharmacology, ||Genetics, and §§Medicine, Cell Biology, and Physiology, Washington University School of Medicine, St. Louis, MO 63110; §Samuel Luenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; {dagger}{dagger}Biomedical Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea; and {ddagger}{ddagger}Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada M5S 1A8

Contributed by Jeffrey I. Gordon September 24, 2004

Abstract: New therapeutic targets for noncognitive reductions in energy intake, absorption, or storage are crucial given the worldwide epidemic of obesity. The gut microbial community (microbiota) is essential for processing dietary polysaccharides. We found that conventionalization of adult germ-free (GF) C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake. Studies of GF and conventionalized mice revealed that the microbiota promotes absorption of monosaccharides from the gut lumen, with resulting induction of de novo hepatic lipogenesis. Fasting-induced adipocyte factor (Fiaf), a member of the angiopoietin-like family of proteins, is selectively suppressed in the intestinal epithelium of normal mice by conventionalization. Analysis of GF and conventionalized, normal and Fiaf knockout mice established that Fiaf is a circulating lipoprotein lipase inhibitor and that its suppression is essential for the microbiota-induced deposition of triglycerides in adipocytes. Studies of Rag1-/- animals indicate that these host responses do not require mature lymphocytes. Our findings suggest that the gut microbiota is an important environmental factor that affects energy harvest from the diet and energy storage in the host.

Key Words: symbiosis • nutrient processing • energy storage • adiposity • fasting-induced adipose factor


Author contributions: F.B., C.F.S., and J.I.G. designed research; F.B., H.D., and L.V.H. performed research; F.B., H.D., G.Y.K., and A.N. contributed new reagents/analytic tools; F.B., T.W., A.N., C.F.S., and J.I.G. analyzed data; F.B. and J.I.G. wrote the paper.

Freely available online through the PNAS open access option.

Abbreviations: GF, germ-free; Fiaf, fasting-induced adipocyte factor; B6, C57BL/6J; PPAR, peroxisome proliferator-activator receptor; CONV-R, conventionally raised; CONV-D, conventionalized; qRT-PCR, quantitative RT-PCR; LPL, lipoprotein lipase; Acc1, acetyl-CoA carboxylase; Fas, fatty acid synthase; SREBP-1, sterol response element binding protein 1; ChREBP, carbohydrate response element binding protein.

Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AY667702-AY668946).

{ddagger} F.B. and H.D. contributed equally to this work.

Present address: Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E OW3.

** Present address: Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390.

¶¶ To whom correspondence should be addressed. E-mail: jgordon{at}molecool.wustl.edu.

© 2004 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Altered Transcription of Murine Genes Induced in the Small Bowel by Administration of Probiotic Strain Lactobacillus rhamnosus HN001.
G. W. Tannock, C. Taylor, B. Lawley, D. Loach, M. Gould, A. C. Dunn, A. D. McLellan, M. A. Black, L. McNoe, J. Dekker, et al. (2014)
Appl. Envir. Microbiol. 80, 2851-2859
   Abstract »    Full Text »    PDF »
An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice.
N.-R. Shin, J.-C. Lee, H.-Y. Lee, M.-S. Kim, T. W. Whon, M.-S. Lee, and J.-W. Bae (2014)
Gut 63, 727-735
   Abstract »    Full Text »    PDF »
The endocannabinoid system links gut microbiota to adipogenesis.
G. G. Muccioli, D. Naslain, F. Backhed, C. S. Reigstad, D. M. Lambert, N. M. Delzenne, and P. D. Cani (2014)
Mol Syst Biol 6, 392
   Abstract »    Full Text »    PDF »
Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model.
F.-P. J. Martin, Y. Wang, N. Sprenger, I. K. S. Yap, T. Lundstedt, P. Lek, S. Rezzi, Z. Ramadan, P. van Bladeren, L. B. Fay, et al. (2014)
Mol Syst Biol 4, 157
   Abstract »    Full Text »    PDF »
Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model.
F.-P. J. Martin, Y. Wang, N. Sprenger, I. K. S. Yap, S. Rezzi, Z. Ramadan, E. Pere-Trepat, F. Rochat, C. Cherbut, P. van Bladeren, et al. (2014)
Mol Syst Biol 4, 205
   Abstract »    Full Text »    PDF »
A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model.
F.-P. J. Martin, M.-E. Dumas, Y. Wang, C. Legido-Quigley, I. K. S. Yap, H. Tang, S. Zirah, G. M. Murphy, O. Cloarec, J. C. Lindon, et al. (2014)
Mol Syst Biol 3, 112
   Abstract »    Full Text »    PDF »
Top-down versus bottom-up--rediscovering physiology via systems biology?.
I. Wilson (2014)
Mol Syst Biol 3, 113
   Full Text »    PDF »
The gut microbiome as novel cardio-metabolic target: the time has come!.
S. Vinje, E. Stroes, M. Nieuwdorp, and S. L. Hazen (2014)
Eur. Heart J. 35, 883-887
   Abstract »    Full Text »    PDF »
Recent advances in clinical practice challenges and opportunities in the management of obesity.
A. Acosta, B. K. Abu Dayyeh, J. D. Port, and M. Camilleri (2014)
Gut 63, 687-695
   Abstract »    Full Text »    PDF »
The Gut Microbiome, Kidney Disease, and Targeted Interventions.
A. Ramezani and D. S. Raj (2014)
J. Am. Soc. Nephrol. 25, 657-670
   Abstract »    Full Text »    PDF »
Draft Genome Sequence of Bifidobacterium animalis subsp. lactis Strain CECT 8145, Able To Improve Metabolic Syndrome In Vivo.
E. Chenoll, F. M. Codoner, A. Silva, J. F. Martinez-Blanch, P. Martorell, D. Ramon, and S. Genoves (2014)
Genome Announc 2, e00183-14
   Abstract »    Full Text »    PDF »
Disturbed intestinal nitrogen homeostasis in a mouse model of high-fat diet-induced obesity and glucose intolerance.
T. T. H. Do, P. Hindlet, A.-J. Waligora-Dupriet, N. Kapel, N. Neveux, V. Mignon, C. Delomenie, R. Farinotti, B. Feve, and M. Buyse (2014)
Am J Physiol Endocrinol Metab 306, E668-E680
   Abstract »    Full Text »    PDF »
More evidence that probiotics may have a role in treating fatty liver disease.
H. Maddur and B. A. Neuschwander-Tetri (2014)
Am J Clin Nutr 99, 425-426
   Full Text »    PDF »
The SIRT1 deacetylase protects mice against the symptoms of metabolic syndrome.
A. Z. Caron, X. He, W. Mottawea, E. L. Seifert, K. Jardine, D. Dewar-Darch, G. O. Cron, M.-E. Harper, A. Stintzi, and M. W. McBurney (2014)
FASEB J 28, 1306-1316
   Abstract »    Full Text »    PDF »
Emerging roles of the microbiome in cancer.
S. J. Bultman (2014)
Carcinogenesis 35, 249-255
   Abstract »    Full Text »    PDF »
Geographical variation of human gut microbial composition.
T. A. Suzuki and M. Worobey (2014)
Biol Lett 10, 20131037
   Abstract »    Full Text »    PDF »
Identifying Gut Microbe-Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice.
J. J. Faith, P. P. Ahern, V. K. Ridaura, J. Cheng, and J. I. Gordon (2014)
Science Translational Medicine 6, 220ra11
   Abstract »    Full Text »    PDF »
Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid.
M. Navab, G. Hough, G. M. Buga, F. Su, A. C. Wagner, D. Meriwether, A. Chattopadhyay, F. Gao, V. Grijalva, J. S. Danciger, et al. (2013)
J. Lipid Res. 54, 3403-3418
   Abstract »    Full Text »    PDF »
Catechin- and caffeine-rich teas for control of body weight in humans.
R. Hursel and M. S. Westerterp-Plantenga (2013)
Am J Clin Nutr 98, 1682S-1693S
   Abstract »    Full Text »    PDF »
Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine.
K. Klaring, L. Hanske, N. Bui, C. Charrier, M. Blaut, D. Haller, C. M. Plugge, and T. Clavel (2013)
Int J Syst Evol Microbiol 63, 4606-4612
   Abstract »    Full Text »    PDF »
Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice.
T. Le Roy, M. Llopis, P. Lepage, A. Bruneau, S. Rabot, C. Bevilacqua, P. Martin, C. Philippe, F. Walker, A. Bado, et al. (2013)
Gut 62, 1787-1794
   Abstract »    Full Text »    PDF »
Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster.
C. Fink, F. Staubach, S. Kuenzel, J. F. Baines, and T. Roeder (2013)
Appl. Envir. Microbiol. 79, 6984-6988
   Abstract »    Full Text »    PDF »
Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth.
M. A. Engevik, E. Aihara, M. H. Montrose, G. E. Shull, D. J. Hassett, and R. T. Worrell (2013)
Am J Physiol Gastrointest Liver Physiol 305, G697-G711
   Abstract »    Full Text »    PDF »
Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue.
E. Y. Huang, V. A. Leone, S. Devkota, Y. Wang, M. J. Brady, and E. B. Chang (2013)
JPEN J Parenter Enteral Nutr 37, 746-754
   Abstract »    Full Text »    PDF »
Nonalcoholic Fatty Liver Disease: For Better or Worse, Blame the Gut Microbiota?.
D.-Y. Li, M. Yang, S. Edwards, and S.-Q. Ye (2013)
JPEN J Parenter Enteral Nutr 37, 787-793
   Abstract »    Full Text »    PDF »
Molecular Studies Neglect Apparently Gram-Negative Populations in the Human Gut Microbiota.
P. Hugon, J.-C. Lagier, C. Robert, C. Lepolard, L. Papazian, D. Musso, B. Vialettes, and D. Raoult (2013)
J. Clin. Microbiol. 51, 3286-3293
   PDF »
Assessing the Human Gut Microbiota in Metabolic Diseases.
F. Karlsson, V. Tremaroli, J. Nielsen, and F. Backhed (2013)
Diabetes 62, 3341-3349
   Abstract »    Full Text »    PDF »
Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk.
A. L. Neves, J. Coelho, L. Couto, A. Leite-Moreira, and R. Roncon-Albuquerque Jr (2013)
J. Mol. Endocrinol. 51, R51-R64
   Abstract »    Full Text »    PDF »
The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation.
S. El Aidy, C. A. Merrifield, M. Derrien, P. van Baarlen, G. Hooiveld, F. Levenez, J. Dore, J. Dekker, E. Holmes, S. P. Claus, et al. (2013)
Gut 62, 1306-1314
   Abstract »    Full Text »    PDF »
The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry?.
M. H. Kogut (2013)
J Appl Poult Res 22, 637-646
   Abstract »    Full Text »    PDF »
Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries.
Y.-h. Luo, H.-w. Peng, A.-D. G. Wright, S.-p. Bai, X.-m. Ding, Q.-f. Zeng, H. Li, P. Zheng, Z.-w. Su, R.-y. Cui, et al. (2013)
Poultry Science 92, 2358-2366
   Abstract »    Full Text »    PDF »
Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion.
H. Yadav, J.-H. Lee, J. Lloyd, P. Walter, and S. G. Rane (2013)
J. Biol. Chem. 288, 25088-25097
   Abstract »    Full Text »    PDF »
Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems.
A. J. Nauta, K. Ben Amor, J. Knol, J. Garssen, and E. van der Beek (2013)
Am J Clin Nutr 98, 586S-593S
   Abstract »    Full Text »    PDF »
Alteration of the intestinal barrier and GLP2 secretion in Berberine-treated type 2 diabetic rats.
C. Y. Shan, J. H. Yang, Y. Kong, X. Y. Wang, M. Y. Zheng, Y. G. Xu, Y. Wang, H. Z. Ren, B. C. Chang, and L. M. Chen (2013)
J. Endocrinol. 218, 255-262
   Abstract »    Full Text »    PDF »
More than just a gut instinct-the potential interplay between a baby's nutrition, its gut microbiome, and the epigenome.
M. Mischke and T. Plosch (2013)
Am J Physiol Regulatory Integrative Comp Physiol 304, R1065-R1069
   Abstract »    Full Text »    PDF »
ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways.
A. Korecka, T. de Wouters, A. Cultrone, N. Lapaque, S. Pettersson, J. Dore, H. M. Blottiere, and V. Arulampalam (2013)
Am J Physiol Gastrointest Liver Physiol 304, G1025-G1037
   Abstract »    Full Text »    PDF »
Fatty Liver Accompanies an Increase in Lactobacillus Species in the Hind Gut of C57BL/6 Mice Fed a High-Fat Diet.
H. Zeng, J. Liu, M. I. Jackson, F.-Q. Zhao, L. Yan, and G. F. Combs Jr (2013)
J. Nutr. 143, 627-631
   Abstract »    Full Text »    PDF »
Ketone body metabolism and cardiovascular disease.
D. G. Cotter, R. C. Schugar, and P. A. Crawford (2013)
Am J Physiol Heart Circ Physiol 304, H1060-H1076
   Abstract »    Full Text »    PDF »
Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor {gamma}.
S. Alex, K. Lange, T. Amolo, J. S. Grinstead, A. K. Haakonsson, E. Szalowska, A. Koppen, K. Mudde, D. Haenen, S. Al-Lahham, et al. (2013)
Mol. Cell. Biol. 33, 1303-1316
   Abstract »    Full Text »    PDF »
Preserved adiposity in the Fischer 344 rat devoid of gut microbiota.
T. D. Swartz, Y. Sakar, F. A. Duca, and M. Covasa (2013)
FASEB J 27, 1701-1710
   Abstract »    Full Text »    PDF »
Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity.
A. P. Liou, M. Paziuk, J.-M. Luevano Jr., S. Machineni, P. J. Turnbaugh, and L. M. Kaplan (2013)
Science Translational Medicine 5, 178ra41
   Abstract »    Full Text »    PDF »
Effect of acupuncture treatment for weight loss on gut flora in patients with simple obesity.
Z. Xu, R. Li, C. Zhu, and M. Li (2013)
Acupunct Med 31, 116-117
   Full Text »    PDF »
A Mixture of trans-Galactooligosaccharides Reduces Markers of Metabolic Syndrome and Modulates the Fecal Microbiota and Immune Function of Overweight Adults.
J. Vulevic, A. Juric, G. Tzortzis, and G. R. Gibson (2013)
J. Nutr. 143, 324-331
   Abstract »    Full Text »    PDF »
Animals in a bacterial world, a new imperative for the life sciences.
M. McFall-Ngai, M. G. Hadfield, T. C. G. Bosch, H. V. Carey, T. Domazet-Loso, A. E. Douglas, N. Dubilier, G. Eberl, T. Fukami, S. F. Gilbert, et al. (2013)
PNAS 110, 3229-3236
   Abstract »    Full Text »    PDF »
The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota.
L. M. Cox, I. Cho, S. A. Young, W. H. K. Anderson, B. J. Waters, S.-C. Hung, Z. Gao, D. Mahana, M. Bihan, A. V. Alekseyenko, et al. (2013)
FASEB J 27, 692-702
   Abstract »    Full Text »    PDF »
Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters.
I. Martinez, D. J. Perdicaro, A. W. Brown, S. Hammons, T. J. Carden, T. P. Carr, K. M. Eskridge, and J. Walter (2013)
Appl. Envir. Microbiol. 79, 516-524
   Abstract »    Full Text »    PDF »
A metagenomic insight into our gut's microbiome.
P. Lepage, M. C. Leclerc, M. Joossens, S. Mondot, H. M. Blottiere, J. Raes, D. Ehrlich, and J. Dore (2013)
Gut 62, 146-158
   Abstract »    Full Text »    PDF »
Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle.
H. V. Carey, W. A. Walters, and R. Knight (2013)
Am J Physiol Regulatory Integrative Comp Physiol 304, R33-R42
   Abstract »    Full Text »    PDF »
Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice.
R. Caesar, C. S. Reigstad, H. K. Backhed, C. Reinhardt, M. Ketonen, G. Ostergren Lunden, P. D. Cani, and F. Backhed (2012)
Gut 61, 1701-1707
   Abstract »    Full Text »    PDF »
Lipopolysaccharide-Binding Protein, a Surrogate Marker of Microbial Translocation, Is Associated With Physical Function in Healthy Older Adults.
J. R. Stehle Jr, X. Leng, D. W. Kitzman, B. J. Nicklas, S. B. Kritchevsky, and K. P. High (2012)
J Gerontol A Biol Sci Med Sci 67, 1212-1218
   Abstract »    Full Text »    PDF »
Can Nutritional Modulation of Maternal Intestinal Microbiota Influence the Development of the Infant Gastrointestinal Tract?.
C. Thum, A. L. Cookson, D. E. Otter, W. C. McNabb, A. J. Hodgkinson, J. Dyer, and N. C. Roy (2012)
J. Nutr. 142, 1921-1928
   Abstract »    Full Text »    PDF »
Toward an Understanding of Changes in Diversity Associated with Fecal Microbiome Transplantation Based on 16S rRNA Gene Deep Sequencing.
D. Shahinas, M. Silverman, T. Sittler, C. Chiu, P. Kim, E. Allen-Vercoe, S. Weese, A. Wong, D. E. Low, and D. R. Pillai (2012)
mBio 3, e00338-12
   Abstract »    Full Text »    PDF »
Regulation of Metabolism: A Cross Talk Between Gut Microbiota and Its Human Host.
R. Burcelin (2012)
Physiology 27, 300-307
   Abstract »    Full Text »    PDF »
Gut Microbiota Metabolism of Anthocyanin Promotes Reverse Cholesterol Transport in Mice Via Repressing miRNA-10b.
D. Wang, M. Xia, X. Yan, D. Li, L. Wang, Y. Xu, T. Jin, and W. Ling (2012)
Circ. Res. 111, 967-981
   Abstract »    Full Text »    PDF »
The Role of Whole Grains in Body Weight Regulation.
J. P. Karl and E. Saltzman (2012)
Adv Nutr 3, 697-707
   Abstract »    Full Text »    PDF »
Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine.
N. de Wit, M. Derrien, H. Bosch-Vermeulen, E. Oosterink, S. Keshtkar, C. Duval, J. de Vogel-van den Bosch, M. Kleerebezem, M. Muller, and R. van der Meer (2012)
Am J Physiol Gastrointest Liver Physiol 303, G589-G599
   Abstract »    Full Text »    PDF »
Direct fed microbial supplementation repartitions host energy to the immune system.
R. Qiu, J. Croom, R. A. Ali, A. L. Ballou, C. D. Smith, C. M. Ashwell, H. M. Hassan, C.- C. Chiang, and M. D. Koci (2012)
J Anim Sci 90, 2639-2651
   Abstract »    Full Text »    PDF »
Quantitative assessment of the impact of the gut microbiota on lysine {varepsilon}-acetylation of host proteins using gnotobiotic mice.
G. M. Simon, J. Cheng, and J. I. Gordon (2012)
PNAS 109, 11133-11138
   Abstract »    Full Text »    PDF »
2010 Informal Nutrition Symposium * Remodeling the intestinal ecosystem toward better performance and intestinal health.
A. A. Pedroso, J. Maurer, Y. Cheng, and M. D. Lee (2012)
J Appl Poult Res 21, 432-443
   Abstract »    Full Text »    PDF »
Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota.
R. Wall, T. M. Marques, O. O'Sullivan, R. P. Ross, F. Shanahan, E. M. Quigley, T. G. Dinan, B. Kiely, G. F. Fitzgerald, P. D. Cotter, et al. (2012)
Am J Clin Nutr 95, 1278-1287
   Abstract »    Full Text »    PDF »
The Human Microbiome and Its Potential Importance to Pediatrics.
C. L. Johnson and J. Versalovic (2012)
Pediatrics 129, 950-960
   Abstract »    Full Text »    PDF »
Ecological Succession of Bacterial Communities during Conventionalization of Germ-Free Mice.
M. G. Gillilland III, J. R. Erb-Downward, C. M. Bassis, M. C. Shen, G. B. Toews, V. B. Young, and G. B. Huffnagle (2012)
Appl. Envir. Microbiol. 78, 2359-2366
   Abstract »    Full Text »    PDF »
Effects of Gut Microbes on Nutrient Absorption and Energy Regulation.
R. Krajmalnik-Brown, Z.-E. Ilhan, D.-W. Kang, and J. K. DiBaise (2012)
Nutr Clin Pract 27, 201-214
   Abstract »    Full Text »    PDF »
Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota.
M. Serino, E. Luche, S. Gres, A. Baylac, M. Berge, C. Cenac, A. Waget, P. Klopp, J. Iacovoni, C. Klopp, et al. (2012)
Gut 61, 543-553
   Abstract »    Full Text »    PDF »
Angiopoietin-like 4 (Angptl4) Protein Is a Physiological Mediator of Intracellular Lipolysis in Murine Adipocytes.
N. E. Gray, L. N. Lam, K. Yang, A. Y. Zhou, S. Koliwad, and J.-C. Wang (2012)
J. Biol. Chem. 287, 8444-8456
   Abstract »    Full Text »    PDF »
Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs.
T. E. Weber and B. J. Kerr (2012)
J Anim Sci 90, 523-532
   Abstract »    Full Text »    PDF »
Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut.
E. Seki and B. Schnabl (2012)
J. Physiol. 590, 447-458
   Abstract »    Full Text »    PDF »
Transient TLR Activation Restores Inflammatory Response and Ability To Control Pulmonary Bacterial Infection in Germfree Mice.
C. T. Fagundes, F. A. Amaral, A. T. Vieira, A. C. Soares, V. Pinho, J. R. Nicoli, L. Q. Vieira, M. M. Teixeira, and D. G. Souza (2012)
J. Immunol. 188, 1411-1420
   Abstract »    Full Text »    PDF »
Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice.
A. Everard, V. Lazarevic, M. Derrien, M. Girard, G. G. Muccioli, A. M. Neyrinck, S. Possemiers, A. Van Holle, P. Francois, W. M. de Vos, et al. (2011)
Diabetes 60, 2775-2786
   Abstract »    Full Text »    PDF »
Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment.
J. Amar, C. Chabo, A. Waget, P. Klopp, C. Vachoux, L. G. Bermudez-Humaran, N. Smirnova, M. Berge, T. Sulpice, S. Lahtinen, et al. (2011)
EMBO Mol Med. 3, 559-572
   Abstract »    Full Text »    PDF »
Pharmaconutrition for the Obese, Critically Ill Patient.
R. T. Hurt, T. H. Frazier, S. A. McClave, and M. C. Cave (2011)
JPEN J Parenter Enteral Nutr 35, 60S-72S
   Abstract »    Full Text »    PDF »
Biology's response to dieting: the impetus for weight regain.
P. S. MacLean, A. Bergouignan, M.-A. Cornier, and M. R. Jackman (2011)
Am J Physiol Regulatory Integrative Comp Physiol 301, R581-R600
   Abstract »    Full Text »    PDF »
Gut Microbiota, Intestinal Permeability, Obesity-Induced Inflammation, and Liver Injury.
T. H. Frazier, J. K. DiBaise, and C. J. McClain (2011)
JPEN J Parenter Enteral Nutr 35, 14S-20S
   Abstract »    Full Text »    PDF »
Bifidobacterium longum supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression.
J. J. Chen, R. Wang, X.-f. Li, and R.-l. Wang (2011)
Experimental Biology and Medicine 236, 823-831
   Abstract »    Full Text »    PDF »
The hybrid science of diet, microbes, and metabolic health.
F. Shanahan and E. Murphy (2011)
Am J Clin Nutr 94, 1-2
   Full Text »    PDF »
Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans.
R. Jumpertz, D. S. Le, P. J. Turnbaugh, C. Trinidad, C. Bogardus, J. I. Gordon, and J. Krakoff (2011)
Am J Clin Nutr 94, 58-65
   Abstract »    Full Text »    PDF »
Proteolytic Processing of Angiopoietin-like Protein 4 by Proprotein Convertases Modulates Its Inhibitory Effects on Lipoprotein Lipase Activity.
X. Lei, F. Shi, D. Basu, A. Huq, S. Routhier, R. Day, and W. Jin (2011)
J. Biol. Chem. 286, 15747-15756
   Abstract »    Full Text »    PDF »
Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice.
A. L. Goodman, G. Kallstrom, J. J. Faith, A. Reyes, A. Moore, G. Dantas, and J. I. Gordon (2011)
PNAS 108, 6252-6257
   Abstract »    Full Text »    PDF »
Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm.
J. Walter, R. A. Britton, and S. Roos (2011)
PNAS 108, 4645-4652
   Abstract »    Full Text »    PDF »
Systemic gut microbial modulation of bile acid metabolism in host tissue compartments.
J. R. Swann, E. J. Want, F. M. Geier, K. Spagou, I. D. Wilson, J. E. Sidaway, J. K. Nicholson, and E. Holmes (2011)
PNAS 108, 4523-4530
   Abstract »    Full Text »    PDF »
Human oral, gut, and plaque microbiota in patients with atherosclerosis.
O. Koren, A. Spor, J. Felin, F. Fak, J. Stombaugh, V. Tremaroli, C. J. Behre, R. Knight, B. Fagerberg, R. E. Ley, et al. (2011)
PNAS 108, 4592-4598
   Abstract »    Full Text »    PDF »
GROWTH AND DEVELOPMENT SYMPOSIUM: Promoting healthier humans through healthier livestock: Animal agriculture enters the metagenomics era.
D. N. Frank (2011)
J Anim Sci 89, 835-844
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882