Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 101 (45): 15944-15948

Copyright © 2004 by the National Academy of Sciences.

From the Cover


CELL BIOLOGY

Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling

Shakil A. Khan * {dagger}, Kwangho Lee {dagger}, {ddagger}, Khalid M. Minhas * {dagger}, Daniel R. Gonzalez *, Shubha V. Y. Raju *, Ankit D. Tejani *, Dechun Li {ddagger}, Dan E. Berkowitz {ddagger}, and Joshua M. Hare *, §

Departments of *Medicine (Cardiology Division) and {ddagger}Anesthesia and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287

Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 9, 2004

Received for publication June 10, 2004.

Abstract: Although interactions between superoxide () and nitric oxide underlie many physiologic and pathophysiologic processes, regulation of this crosstalk at the enzymatic level is poorly understood. Here, we demonstrate that xanthine oxidoreductase (XOR), a prototypic superoxide -producing enzyme, and neuronal nitric oxide synthase (NOS1) coimmunoprecipitate and colocalize in the sarcoplasmic reticulum of cardiac myocytes. Deficiency of NOS1 (but not endothelial NOS, NOS3) leads to profound increases in XOR-mediated production, which in turn depresses myocardial excitation–contraction coupling in a manner reversible by XOR inhibition with allopurinol. These data demonstrate a unique interaction between a nitric oxide and an -generating enzyme that accounts for crosstalk between these signaling pathways; these findings demonstrate a direct antioxidant mechanism for NOS1 and have pathophysiologic implications for the growing number of disease states in which increased XOR activity plays a role.


Author contributions: S.A.K., K.L., K.M.M., D.E.B., and J.M.H. designed research; S.A.K., K.L., K.M.M., D.R.G., S.V.Y.R., A.D.T., and D.L. performed research; D.L. and J.M.H. contributed new reagents/analytic tools; S.A.K., K.L., K.M.M., D.R.G., S.V.Y.R., and D.L. analyzed data; and S.A.K., D.E.B., and J.M.H. wrote the paper.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: XOR, xanthine oxidoreductase; NOS, nitric oxide synthase; NOS1, neuronal NOS; NOS3, endothelial NOS; SR, sarcoplasmic reticulum; SERCA, SR Ca2+ ATPase; SL, sarcomere length; DHE, dihydroethidium; DAF, diaminofluorescein; OS, oxidative stress; [Ca2+]i, Ca2+ transient.

{dagger} S.A.K., K.L., and K.M.M. contributed equally to this work.

§ To whom correspondence should be addressed. E-mail: jhare{at}mail.jhmi.edu.

© 2004 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Partial restoration of cardiac function with {Delta}PDZ nNOS in aged mdx model of Duchenne cardiomyopathy.
Y. Lai, J. Zhao, Y. Yue, N. B. Wasala, and D. Duan (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
Xanthine oxidase inhibition preserves left ventricular systolic but not diastolic function in cardiac volume overload.
J. D. Gladden, B. R. Zelickson, J. L. Guichard, M. I. Ahmed, D. M. Yancey, S. Ballinger, M. Shanmugam, G. J. Babu, M. S. Johnson, V. Darley-Usmar, et al. (2013)
Am J Physiol Heart Circ Physiol 305, H1440-H1450
   Abstract »    Full Text »    PDF »
Hydralazine and Organic Nitrates Restore Impaired Excitation-Contraction Coupling by Reducing Calcium Leak Associated with Nitroso-Redox Imbalance.
R. A. Dulce, O. Yiginer, D. R. Gonzalez, G. Goss, N. Feng, M. Zheng, and J. M. Hare (2013)
J. Biol. Chem. 288, 6522-6533
   Abstract »    Full Text »    PDF »
Regulation of Endothelial Nitric-oxide Synthase (NOS) S-Glutathionylation by Neuronal NOS: EVIDENCE OF A FUNCTIONAL INTERACTION BETWEEN MYOCARDIAL CONSTITUTIVE NOS ISOFORMS.
W. O. Idigo, S. Reilly, M. H. Zhang, Y. H. Zhang, R. Jayaram, R. Carnicer, M. J. Crabtree, J.-L. Balligand, and B. Casadei (2012)
J. Biol. Chem. 287, 43665-43673
   Abstract »    Full Text »    PDF »
Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing.
I. Sigala, P. Zacharatos, S. Boulia, D. Toumpanakis, T. Michailidou, D. Parthenis, C. Roussos, A. Papapetropoulos, S. N. Hussain, and T. Vassilakopoulos (2012)
J Appl Physiol 113, 1594-1603
   Abstract »    Full Text »    PDF »
Aberrant S-nitrosylation mediates calcium-triggered ventricular arrhythmia in the intact heart.
M. J. Cutler, B. N. Plummer, X. Wan, Q.-A. Sun, D. Hess, H. Liu, I. Deschenes, D. S. Rosenbaum, J. S. Stamler, and K. R. Laurita (2012)
PNAS 109, 18186-18191
   Abstract »    Full Text »    PDF »
Cardiomyocyte GTP Cyclohydrolase 1 and Tetrahydrobiopterin Increase NOS1 Activity and Accelerate Myocardial Relaxation.
R. Carnicer, A. B. Hale, S. Suffredini, X. Liu, S. Reilly, M. H. Zhang, N. C. Surdo, J. K. Bendall, M. J. Crabtree, G. B. S. Lim, et al. (2012)
Circ. Res. 111, 718-727
   Abstract »    Full Text »    PDF »
Nitric oxide synthase, ADMA, SDMA, and nitric oxide activity in the paraventricular nucleus throughout the etiology of renal wrap hypertension.
C. A. Northcott, S. Billecke, T. Craig, C. Hinojosa-Laborde, K. P. Patel, A. F. Chen, L. G. D'Alecy, and J. R. Haywood (2012)
Am J Physiol Heart Circ Physiol 302, H2276-H2284
   Abstract »    Full Text »    PDF »
Nitric oxide synthase in post-ischaemic remodelling: new pathways and mechanisms.
B. Manoury, V. Montiel, and J.-L. Balligand (2012)
Cardiovasc Res 94, 304-315
   Abstract »    Full Text »    PDF »
Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4.
Q.-A. Sun, D. T. Hess, L. Nogueira, S. Yong, D. E. Bowles, J. Eu, K. R. Laurita, G. Meissner, and J. S. Stamler (2011)
PNAS 108, 16098-16103
   Abstract »    Full Text »    PDF »
Hydralazine and Isosorbide Dinitrate in Heart Failure: Historical Perspective, Mechanisms, and Future Directions.
R. T. Cole, A. P. Kalogeropoulos, V. V. Georgiopoulou, M. Gheorghiade, A. Quyyumi, C. Yancy, and J. Butler (2011)
Circulation 123, 2414-2422
   Full Text »    PDF »
Conditional Overexpression of Neuronal Nitric Oxide Synthase Is Cardioprotective in Ischemia/Reperfusion.
N. Burkard, T. Williams, M. Czolbe, N. Blomer, F. Panther, M. Link, D. Fraccarollo, J. D. Widder, K. Hu, H. Han, et al. (2010)
Circulation 122, 1588-1603
   Abstract »    Full Text »    PDF »
Uncoupled Cardiac Nitric Oxide Synthase Mediates Diastolic Dysfunction.
G. A. Silberman, T.-H. M. Fan, H. Liu, Z. Jiao, H. D. Xiao, J. D. Lovelock, B. M. Boulden, J. Widder, S. Fredd, K. E. Bernstein, et al. (2010)
Circulation 121, 519-528
   Abstract »    Full Text »    PDF »
Neuronal Nitric Oxide Synthase Protects Against Myocardial Infarction-Induced Ventricular Arrhythmia and Mortality in Mice.
D. E. Burger, X. Lu, M. Lei, F.-L. Xiang, L. Hammoud, M. Jiang, H. Wang, D. L. Jones, S. M. Sims, and Q. Feng (2009)
Circulation 120, 1345-1354
   Abstract »    Full Text »    PDF »
Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure.
C. Bergamini, M. Cicoira, A. Rossi, and C. Vassanelli (2009)
Eur J Heart Fail 11, 444-452
   Abstract »    Full Text »    PDF »
Role of neuronal NO synthase in regulating vascular superoxide levels and mitogen-activated protein kinase phosphorylation.
G.-X. Zhang, S. Kimura, K. Murao, J. Shimizu, H. Matsuyoshi, and M. Takaki (2009)
Cardiovasc Res 81, 389-399
   Abstract »    Full Text »    PDF »
Identification of Proteins Binding to E-Box/Ku86 Sites and Function of the Tumor Suppressor SAFB1 in Transcriptional Regulation of the Human Xanthine Oxidoreductase Gene.
J. Lin, P. Xu, P. LaVallee, and J. R. Hoidal (2008)
J. Biol. Chem. 283, 29681-29689
   Abstract »    Full Text »    PDF »
Mineralocorticoid Receptor Antagonism Attenuates Cardiac Hypertrophy and Prevents Oxidative Stress in Uremic Rats.
L. Michea, A. Villagran, A. Urzua, S. Kuntsmann, P. Venegas, L. Carrasco, M. Gonzalez, and E. T. Marusic (2008)
Hypertension 52, 295-300
   Abstract »    Full Text »    PDF »
Neuronal nitric oxide synthase signaling within cardiac myocytes targets phospholamban.
H. Wang, M. J. Kohr, C. J. Traynham, D. G. Wheeler, P. M. L. Janssen, and M. T. Ziolo (2008)
Am J Physiol Cell Physiol 294, C1566-C1575
   Abstract »    Full Text »    PDF »
Xanthine oxidoreductase in respiratory and cardiovascular disorders.
A. Boueiz, M. Damarla, and P. M. Hassoun (2008)
Am J Physiol Lung Cell Mol Physiol 294, L830-L840
   Abstract »    Full Text »    PDF »
Reduced Phospholamban Phosphorylation Is Associated With Impaired Relaxation in Left Ventricular Myocytes From Neuronal NO Synthase-Deficient Mice.
Y. H. Zhang, M. H. Zhang, C. E. Sears, K. Emanuel, C. Redwood, A. El-Armouche, E. G. Kranias, and B. Casadei (2008)
Circ. Res. 102, 242-249
   Abstract »    Full Text »    PDF »
Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling.
G. Lim, L. Venetucci, D. A. Eisner, and B. Casadei (2008)
Cardiovasc Res 77, 256-264
   Abstract »    Full Text »    PDF »
Cardiovascular roles of nitric oxide: A review of insights from nitric oxide synthase gene disrupted mice.
V. W.T. Liu and P. L. Huang (2008)
Cardiovasc Res 77, 19-29
   Abstract »    Full Text »    PDF »
Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes.
D. R. Gonzalez, F. Beigi, A. V. Treuer, and J. M. Hare (2007)
PNAS 104, 20612-20617
   Abstract »    Full Text »    PDF »
Leptin Signaling and Obesity: Cardiovascular Consequences.
R. Yang and L. A. Barouch (2007)
Circ. Res. 101, 545-559
   Abstract »    Full Text »    PDF »
Cardiomyocytes as effectors of nitric oxide signalling.
M. Seddon, A. M. Shah, and B. Casadei (2007)
Cardiovasc Res 75, 315-326
   Abstract »    Full Text »    PDF »
Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity.
M. A. Hoydal, U. Wisloff, O. J. Kemi, S. L. Britton, L. G. Koch, G. L. Smith, and O. Ellingsen (2007)
European Journal of Cardiovascular Prevention & Rehabilitation 14, 319-325
   Abstract »    Full Text »    PDF »
Chronic allopurinol administration ameliorates maladaptive alterations in Ca2+ cycling proteins and beta-adrenergic hyporesponsiveness in heart failure.
A. P. Saliaris, L. C. Amado, K. M. Minhas, K. H. Schuleri, S. Lehrke, M. St. John, T. Fitton, C. Barreiro, C. Berry, M. Zheng, et al. (2007)
Am J Physiol Heart Circ Physiol 292, H1328-H1335
   Abstract »    Full Text »    PDF »
Conditional Neuronal Nitric Oxide Synthase Overexpression Impairs Myocardial Contractility.
N. Burkard, A. G. Rokita, S. G. Kaufmann, M. Hallhuber, R. Wu, K. Hu, U. Hofmann, A. Bonz, S. Frantz, E. J. Cartwright, et al. (2007)
Circ. Res. 100, e32-e44
   Abstract »    Full Text »    PDF »
Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling.
E. Takimoto and D. A. Kass (2007)
Hypertension 49, 241-248
   Full Text »    PDF »
Myocyte Nitroso-Redox Imbalance in Sepsis: NO Simple Answer.
D. E. Berkowitz (2007)
Circ. Res. 100, 1-4
   Full Text »    PDF »
Cardiomyocyte-Specific Overexpression of Nitric Oxide Synthase 3 Prevents Myocardial Dysfunction in Murine Models of Septic Shock.
F. Ichinose, E. S. Buys, T. G. Neilan, E. M. Furutani, J. G. Morgan, D. S. Jassal, A. R. Graveline, R. J. Searles, C. C. Lim, M. Kaneki, et al. (2007)
Circ. Res. 100, 130-139
   Abstract »    Full Text »    PDF »
The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function.
B. Casadei (2006)
Exp Physiol 91, 943-955
   Abstract »    Full Text »    PDF »
Nitroso-Redox Interactions in the Cardiovascular System.
J. M. Zimmet and J. M. Hare (2006)
Circulation 114, 1531-1544
   Full Text »    PDF »
Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism.
J. Steppan, S. Ryoo, K. H. Schuleri, C. Gregg, R. K. Hasan, A. R. White, L. J. Bugaj, M. Khan, L. Santhanam, D. Nyhan, et al. (2006)
PNAS 103, 4759-4764
   Abstract »    Full Text »    PDF »
Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol.
P. Pacher, A. Nivorozhkin, and C. Szabo (2006)
Pharmacol. Rev. 58, 87-114
   Abstract »    Full Text »    PDF »
Xanthine Oxidoreductase Inhibition Causes Reverse Remodeling in Rats With Dilated Cardiomyopathy.
K. M. Minhas, R. M. Saraiva, K. H. Schuleri, S. Lehrke, M. Zheng, A. P. Saliaris, C. E. Berry, K. M. Vandegaer, D. Li, and J. M. Hare (2006)
Circ. Res. 98, 271-279
   Abstract »    Full Text »    PDF »
On the impact of NO-globin interactions in the cardiovascular system.
A. Godecke (2006)
Cardiovasc Res 69, 309-317
   Abstract »    Full Text »    PDF »
nNOS Gene Deletion Exacerbates Pathological Left Ventricular Remodeling and Functional Deterioration After Myocardial Infarction.
D. Dawson, C. A. Lygate, M.-H. Zhang, K. Hulbert, S. Neubauer, and B. Casadei (2005)
Circulation 112, 3729-3737
   Abstract »    Full Text »    PDF »
Deficiency of Neuronal Nitric Oxide Synthase Increases Mortality and Cardiac Remodeling After Myocardial Infarction: Role of Nitroso-Redox Equilibrium.
R. M. Saraiva, K. M. Minhas, S. V.Y. Raju, L. A. Barouch, E. Pitz, K. H. Schuleri, K. Vandegaer, D. Li, and J. M. Hare (2005)
Circulation 112, 3415-3422
   Abstract »    Full Text »    PDF »
Stoichiometric Relationships Between Endothelial Tetrahydrobiopterin, Endothelial NO Synthase (eNOS) Activity, and eNOS Coupling in Vivo: Insights From Transgenic Mice With Endothelial-Targeted GTP Cyclohydrolase 1 and eNOS Overexpression.
J. K. Bendall, N. J. Alp, N. Warrick, S. Cai, D. Adlam, K. Rockett, M. Yokoyama, S. Kawashima, and K. M. Channon (2005)
Circ. Res. 97, 864-871
   Abstract »    Full Text »    PDF »
Xanthine oxidase inhibitors: an emerging class of drugs for heart failure.
M. M. Kittleson and J. M. Hare (2005)
Eur. Heart J. 26, 1458-1460
   Full Text »    PDF »
Nitric Oxide and Oxidative Stress in Cardiovascular Aging.
S. V. Y. Raju, L. A. Barouch, and J. M. Hare (2005)
Sci. Aging Knowl. Environ. 2005, re4
   Abstract »    Full Text »    PDF »
A Defect of Neuronal Nitric Oxide Synthase Increases Xanthine Oxidase-Derived Superoxide Anion and Attenuates the Control of Myocardial Oxygen Consumption by Nitric Oxide Derived From Endothelial Nitric Oxide Synthase.
S. Kinugawa, H. Huang, Z. Wang, P. M. Kaminski, M. S. Wolin, and T. H. Hintze (2005)
Circ. Res. 96, 355-362
   Abstract »    Full Text »    PDF »
NO and superoxide: Opposite ends of the seesaw in cardiac contractility.
J. Bonaventura and A. Gow (2004)
PNAS 101, 16403-16404
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882