Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 102 (1): 204-209

Copyright © 2005 by the National Academy of Sciences.


Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis

Philip M. Bauer *, Jun Yu *, Yan Chen *, Reed Hickey {dagger}, Pascal N. Bernatchez *, Robin Looft-Wilson *, Yan Huang {dagger}, Frank Giordano {dagger}, Radu V. Stan {ddagger}, and William C. Sessa *, §

*Departments of Pharmacology and Vascular Cell Signaling and Therapeutics Program, Boyer Center for Molecular Medicine, and {dagger}Medicine and Cardiovasculate Gene Therapy Program, Yale University School of Medicine, New Haven, CT 06536; and {ddagger}Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756

Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA

Accepted for publication November 22, 2004.

Received for publication August 18, 2004.

Abstract: The functions of caveolae and/or caveolins in intact animals are beginning to be explored. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in several postnatal vascular paradigms. First, increasing levels of Cav-1 do not increase caveolae number in the endothelium in vivo. Second, despite a lack of quantitative changes in organelle number, endothelial-specific expression of Cav-1 impairs endothelial nitric oxide synthase activation, endothelial barrier function, and angiogenic responses to exogenous VEGF and tissue ischemia. In addition, VEGF-mediated phosphorylation of Akt and its substrate, endothelial nitric oxide synthase, were significantly reduced in VEGF-treated Cav-1 transgenic mice, compared with WT littermates. The inhibitory effect of Cav-1 expression on the Akt-endothelial nitric oxide synthase pathway was specific because VEGF-stimulated phosphorylation of mitogen-activated protein kinase (ERK1/2) was elevated in the Cav-1 transgenics, compared with littermates. These data strongly support the idea that, in vivo, Cav-1 may modulate signaling pathways independent of its essential role in caveolae biogenesis.

Key Words: nitric oxide • caveolae • VEGF • signal transduction

Author contributions: R.H., F.G., and W.C.S. designed research; P.M.B., J.Y., Y.C., P.N.B., R.L.-W., Y.H., and R.V.S. performed research; P.M.B., R.V.S., and W.C.S. analyzed data; and W.C.S. wrote the paper.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: TG, transgenic; Cav, caveolin; NO, nitric oxide; eNOS, endothelial NO synthase; PE, phenylephrine; ACh, acetylcholine; L-NAME, L-nitro arginine methyl ester; RT, room temperature; PECAM, platelet-endothelial cell adhesion molecule.

§ To whom correspondence should be addressed. E-mail: william.sessa{at}

© 2005 by The National Academy of Sciences of the USA

Adiponectin Inhibits Tumor Necrosis Factor-{alpha}-Induced Vascular Inflammatory Response via Caveolin-Mediated Ceramidase Recruitment and Activation.
Y. Wang, X. Wang, W. B. Lau, Y. Yuan, D. Booth, J.-J. Li, R. Scalia, K. Preston, E. Gao, W. Koch, et al. (2014)
Circ. Res. 114, 792-805
   Abstract »    Full Text »    PDF »
Dexamethasone induces caveolin-1 in vascular endothelial cells: implications for attenuated responses to VEGF.
J. Igarashi, T. Hashimoto, K. Shoji, K. Yoneda, I. Tsukamoto, T. Moriue, Y. Kubota, and H. Kosaka (2013)
Am J Physiol Cell Physiol 304, C790-C800
   Abstract »    Full Text »    PDF »
Signal Transduction by Vascular Endothelial Growth Factor Receptors.
S. Koch and L. Claesson-Welsh (2012)
Cold Spring Harb Perspect Med 2, a006502
   Abstract »    Full Text »    PDF »
Activated CD47 promotes pulmonary arterial hypertension through targeting caveolin-1.
P. M. Bauer, E. M. Bauer, N. M. Rogers, M. Yao, M. Feijoo-Cuaresma, J. M. Pilewski, H. C. Champion, B. S. Zuckerbraun, M. J. Calzada, and J. S. Isenberg (2012)
Cardiovasc Res 93, 682-693
   Abstract »    Full Text »    PDF »
Caveolin-1 opens endothelial cell junctions by targeting catenins.
R. Kronstein, J. Seebach, S. Grossklaus, C. Minten, B. Engelhardt, M. Drab, S. Liebner, Y. Arsenijevic, A. A. Taha, T. Afanasieva, et al. (2012)
Cardiovasc Res 93, 130-140
   Abstract »    Full Text »    PDF »
Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome.
Y. Z. Zheng, C. Boscher, K. L. Inder, M. Fairbank, D. Loo, M. M. Hill, I. R. Nabi, and L. J. Foster (2011)
Mol. Cell. Proteomics 10, M110.007146
   Abstract »    Full Text »    PDF »
Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism.
K. Karuppiah, L. J. Druhan, C.-a. Chen, T. Smith, J. L. Zweier, W. C. Sessa, and A. J. Cardounel (2011)
Am J Physiol Heart Circ Physiol 301, H903-H911
   Abstract »    Full Text »    PDF »
A. Davalos, C. Fernandez-Hernando, G. Sowa, B. Derakhshan, M. I. Lin, J. Y. Lee, H. Zhao, R. Luo, C. Colangelo, and W. C. Sessa (2010)
Mol. Cell. Proteomics 9, 2109-2124
   Abstract »    Full Text »    PDF »
Platelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase.
Y. Yang, J. Yin, W. Baumgartner, R. Samapati, E. A. Solymosi, E. Reppien, W. M. Kuebler, and S. Uhlig (2010)
Eur. Respir. J. 36, 417-427
   Abstract »    Full Text »    PDF »
Caveolae, caveolins, and cavins: complex control of cellular signalling and inflammation.
J. H. Chidlow Jr and W. C. Sessa (2010)
Cardiovasc Res 86, 219-225
   Abstract »    Full Text »    PDF »
Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level.
X. Zhang, S. Kazerounian, M. Duquette, C. Perruzzi, J. A. Nagy, H. F. Dvorak, S. Parangi, and J. Lawler (2009)
FASEB J 23, 3368-3376
   Abstract »    Full Text »    PDF »
The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo.
M. Schleicher, J. Yu, T. Murata, B. Derakhshan, D. Atochin, L. Qian, S. Kashiwagi, A. Di Lorenzo, K. D. Harrison, P. L. Huang, et al. (2009)
Science Signaling 2, ra41
   Abstract »    Full Text »    PDF »
Venous and Arterial Identity: A Role for Caveolae?.
M. Rivera, A. Muto, A. Feigel, Y. Kondo, and A. Dardik (2009)
Vascular 17, S10-S14
   Abstract »    Full Text »    PDF »
Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane.
P. Lajoie, J. G. Goetz, J. W. Dennis, and I. R. Nabi (2009)
J. Cell Biol. 185, 381-385
   Abstract »    Full Text »    PDF »
Hypoxia Modulation of Caveolin-1 and Vascular Endothelial Growth Factor in Ovine Fetal Membranes.
C. Y. Cheung and R. A. Brace (2008)
Reproductive Sciences 15, 469-476
   Abstract »    PDF »
Role of NF-{kappa}B-dependent Caveolin-1 Expression in the Mechanism of Increased Endothelial Permeability Induced by Lipopolysaccharide.
C. Tiruppathi, J. Shimizu, K. Miyawaki-Shimizu, S. M. Vogel, A. M. Bair, R. D. Minshall, D. Predescu, and A. B. Malik (2008)
J. Biol. Chem. 283, 4210-4218
   Abstract »    Full Text »    PDF »
Plasma membrane domain organization regulates EGFR signaling in tumor cells.
P. Lajoie, E. A. Partridge, G. Guay, J. G. Goetz, J. Pawling, A. Lagana, B. Joshi, J. W. Dennis, and I. R. Nabi (2007)
J. Cell Biol. 179, 341-356
   Abstract »    Full Text »    PDF »
Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice.
T. Murata, M. I. Lin, Y. Huang, J. Yu, P. M. Bauer, F. J. Giordano, and W. C. Sessa (2007)
J. Exp. Med. 204, 2373-2382
   Abstract »    Full Text »    PDF »
Molecular determinants of endothelial transcytosis and their role in endothelial permeability.
S. A. Predescu, D. N. Predescu, and A. B. Malik (2007)
Am J Physiol Lung Cell Mol Physiol 293, L823-L842
   Abstract »    Full Text »    PDF »
Genetic Evidence Supporting Caveolae Microdomain Regulation of Calcium Entry in Endothelial Cells.
T. Murata, M. I. Lin, R. V. Stan, P. M. Bauer, J. Yu, and W. C. Sessa (2007)
J. Biol. Chem. 282, 16631-16643
   Abstract »    Full Text »    PDF »
Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells.
L. Song, S. Ge, and J. S. Pachter (2007)
Blood 109, 1515-1523
   Abstract »    Full Text »    PDF »
Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments.
M. G. Lampugnani, F. Orsenigo, M. C. Gagliani, C. Tacchetti, and E. Dejana (2006)
J. Cell Biol. 174, 593-604
   Abstract »    Full Text »    PDF »
Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase.
M. M. Vihanto, C. Vindis, V. Djonov, D. P. Cerretti, and U. Huynh-Do (2006)
J. Cell Sci. 119, 2299-2309
   Abstract »    Full Text »    PDF »
Caveolin Plays a Central Role in Endothelial Progenitor Cell Mobilization and Homing in SDF-1-Driven Postischemic Vasculogenesis.
E. Sbaa, J. DeWever, P. Martinive, C. Bouzin, F. Frerart, J.-L. Balligand, C. Dessy, and O. Feron (2006)
Circ. Res. 98, 1219-1227
   Abstract »    Full Text »    PDF »
Vesicular Trafficking of Tyrosine Kinase Receptors and Associated Proteins in the Regulation of Signaling and Vascular Function.
S. Mukherjee, M. Tessema, and A. Wandinger-Ness (2006)
Circ. Res. 98, 743-756
   Abstract »    Full Text »    PDF »
siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway.
K. Miyawaki-Shimizu, D. Predescu, J. Shimizu, M. Broman, S. Predescu, and A. B. Malik (2006)
Am J Physiol Lung Cell Mol Physiol 290, L405-L413
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882