Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 102 (22): 8054-8059

Copyright © 2005 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / PLANT BIOLOGY

A central role for S-nitrosothiols in plant disease resistance

Angela Feechan*, Eunjung Kwon*, Byung-Wook Yun*, Yiqin Wang*, Jacqueline A. Pallas{dagger},{ddagger}, and Gary J. Loake*,§

*Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and {dagger}Trait Research, Syngenta, Jealott's Hill, Bracknell, Berkshire RG42 6EY, United Kingdom

Received for publication February 21, 2005.

Abstract: Animal S-nitrosoglutathione reductase (GSNOR) governs the extent of cellular S-nitrosylation, a key redox-based posttranslational modification. Mutations in AtGSNOR1, an Arabidopsis thaliana GSNOR, modulate the extent of cellular S-nitrosothiol (SNO) formation in this model plant species. Loss of AtGSNOR1 function increased SNO levels, disabling plant defense responses conferred by distinct resistance (R) gene subclasses. Furthermore, in the absence of AtGSNOR1, both basal and nonhost disease resistance are also compromised. Conversely, increased AtGSNOR1 activity reduced SNO formation, enhancing protection against ordinarily virulent microbial pathogens. Here we demonstrate that AtGSNOR1 positively regulates the signaling network controlled by the plant immune system activator, salicylic acid. This contrasts with the function of this enzyme in mice during endotoxic shock, where GSNOR antagonizes inflammatory responses. Our data imply SNO formation and turnover regulate multiple modes of plant disease resistance.

Key Words: S-nitrosylation • salicylic acid • nitric oxide


§ To whom correspondence should be addressed. E-mail: gloake{at}ed.ac.uk.

{ddagger} Present address: Bloomsbury Centre for Bioinformatics, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Edited by Brian J. Staskawicz, University of California, Berkeley, CA, and approved April 18, 2005

Author contributions: G.J.L. designed research; A.F., E.K., B.-W.Y., and Y.W. performed research; A.F., E.K., B.-W.Y., Y.W., J.A.P., and G.J.L. analyzed data; and G.J.L. wrote the paper.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: NHR, nonhost disease resistance; R, resistance gene; avr, avirulence; SNO, S-nitrosothiols; GSNO, S-nitrosoglutathione; GSNOR, GSNO reductase; AtGSNOR1, A. thaliana GSNOR; SA, salicylic acid; NOS, NO synthase; SAG, SA-β-glucoside; Pst, Pseudomonas syringae pv. Tomato; Bgt, Blumeria graminis f.sp. tritici; Psp, Pseudomonas syringae pv. phaseolicola.

© 2005 by The National Academy of Sciences of the USA

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential Transcriptomic Analysis by RNA-Seq of GSNO-Responsive Genes Between Arabidopsis Roots and Leaves.
J. C. Begara-Morales, B. Sanchez-Calvo, F. Luque, M. O. Leyva-Perez, M. Leterrier, F. J. Corpas, and J. B. Barroso (2014)
Plant Cell Physiol.
   Abstract »    Full Text »    PDF »
Nitric oxide in plants: an assessment of the current state of knowledge.
L. A. J. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. M. Harren, K. H. Hebelstrup, and K. J. Gupta (2013)
AoB Plants 5, pls052
   Abstract »    Full Text »    PDF »
Mechanisms of Nitrosylation and Denitrosylation of Cytoplasmic Glyceraldehyde-3-phosphate Dehydrogenase from Arabidopsis thaliana.
M. Zaffagnini, S. Morisse, M. Bedhomme, C. H. Marchand, M. Festa, N. Rouhier, S. D. Lemaire, and P. Trost (2013)
J. Biol. Chem. 288, 22777-22789
   Abstract »    Full Text »    PDF »
PARAQUAT RESISTANT1, a Golgi-Localized Putative Transporter Protein, Is Involved in Intracellular Transport of Paraquat.
J. Li, J. Mu, J. Bai, F. Fu, T. Zou, F. An, J. Zhang, H. Jing, Q. Wang, Z. Li, et al. (2013)
Plant Physiology 162, 470-483
   Abstract »    Full Text »    PDF »
Cytokinins can act as suppressors of nitric oxide in Arabidopsis.
W.-Z. Liu, D.-D. Kong, X.-X. Gu, H.-B. Gao, J.-Z. Wang, M. Xia, Q. Gao, L.-L. Tian, Z.-H. Xu, F. Bao, et al. (2013)
PNAS 110, 1548-1553
   Abstract »    Full Text »    PDF »
Nitric Oxide-Mediated Maintenance of Redox Homeostasis Contributes to NPR1-Dependent Plant Innate Immunity Triggered by Lipopolysaccharides.
A. Sun, S. Nie, and D. Xing (2012)
Plant Physiology 160, 1081-1096
   Abstract »    Full Text »    PDF »
Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L..
N. Lehotai, Z. Kolbert, A. Peto, G. Feigl, A. Ordog, D. Kumar, I. Tari, and L. Erdei (2012)
J. Exp. Bot. 63, 5677-5687
   Abstract »    Full Text »    PDF »
S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana.
M. C. Espunya, R. De Michele, A. Gomez-Cadenas, and M. C. Martinez (2012)
J. Exp. Bot. 63, 3219-3227
   Abstract »    Full Text »    PDF »
S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.
A. P. Ortega-Galisteo, M. Rodriguez-Serrano, D. M. Pazmino, D. K. Gupta, L. M. Sandalio, and M. C. Romero-Puertas (2012)
J. Exp. Bot. 63, 2089-2103
   Abstract »    Full Text »    PDF »
Nitric Oxide and Protein S-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice.
A. Lin, Y. Wang, J. Tang, P. Xue, C. Li, L. Liu, B. Hu, F. Yang, G. J. Loake, and C. Chu (2012)
Plant Physiology 158, 451-464
   Abstract »    Full Text »    PDF »
Detection and Quantification of S-Nitrosoglutathione (GSNO) in Pepper (Capsicum annuum L.) Plant Organs by LC-ES/MS.
M. Airaki, L. Sanchez-Moreno, M. Leterrier, J. B. Barroso, J. M. Palma, and F. J. Corpas (2011)
Plant Cell Physiol. 52, 2006-2015
   Abstract »    Full Text »    PDF »
S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata.
H. Wunsche, I. T. Baldwin, and J. Wu (2011)
J. Exp. Bot. 62, 4605-4616
   Abstract »    Full Text »    PDF »
Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings.
M. Chaki, R. Valderrama, A. M. Fernandez-Ocana, A. Carreras, M. V. Gomez-Rodriguez, J. R. Pedrajas, J. C. Begara-Morales, B. Sanchez-Calvo, F. Luque, M. Leterrier, et al. (2011)
J. Exp. Bot. 62, 1803-1813
   Abstract »    Full Text »    PDF »
Protein S-Nitrosylation in Plants: Photorespiratory Metabolism and NO Signaling.
K. J. Gupta (2011)
Science Signaling 4, jc1
   Abstract »    Full Text »    PDF »
Ascorbate and Glutathione: The Heart of the Redox Hub.
C. H. Foyer and G. Noctor (2011)
Plant Physiology 155, 2-18
   Full Text »    PDF »
Lymphocyte Development Requires S-nitrosoglutathione Reductase.
Z. Yang, Z.-E. Wang, P.-T. Doulias, W. Wei, H. Ischiropoulos, R. M. Locksley, and L. Liu (2010)
J. Immunol. 185, 6664-6669
   Abstract »    Full Text »    PDF »
Redox Regulation of the NPR1-TGA1 System of Arabidopsis thaliana by Nitric Oxide.
C. Lindermayr, S. Sell, B. Muller, D. Leister, and J. Durner (2010)
PLANT CELL 22, 2894-2907
   Abstract »    Full Text »    PDF »
S-Nitrosylation from GSNOR Deficiency Impairs DNA Repair and Promotes Hepatocarcinogenesis.
W. Wei, B. Li, M. A. Hanes, S. Kakar, X. Chen, and L. Liu (2010)
Science Translational Medicine 2, 19ra13
   Abstract »    Full Text »    PDF »
Peroxisomes Are Required for in Vivo Nitric Oxide Accumulation in the Cytosol following Salinity Stress of Arabidopsis Plants.
F. J. Corpas, M. Hayashi, S. Mano, M. Nishimura, and J. B. Barroso (2009)
Plant Physiology 151, 2083-2094
   Abstract »    Full Text »    PDF »
Endogenous S-nitrosothiols protect against myocardial injury.
B. Lima, G. K. W. Lam, L. Xie, D. L. Diesen, N. Villamizar, J. Nienaber, E. Messina, D. Bowles, C. D. Kontos, J. M. Hare, et al. (2009)
PNAS 106, 6297-6302
   Abstract »    Full Text »    PDF »
Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction.
M. Chaki, A. M. Fernandez-Ocana, R. Valderrama, A. Carreras, F. J. Esteban, F. Luque, M. V. Gomez-Rodriguez, J. C. Begara-Morales, F. J. Corpas, and J. B. Barroso (2009)
Plant Cell Physiol. 50, 665-679
   Abstract »    Full Text »    PDF »
Involvement of Reactive Nitrogen and Oxygen Species (RNS and ROS) in Sunflower-Mildew Interaction.
M. Chaki, A. M. Fernandez-Ocana, R. Valderrama, A. Carreras, F. J. Esteban, F. Luque, M. V. Gomez-Rodriguez, J. C. Begara-Morales, F. J. Corpas, and J. B. Barroso (2009)
Plant Cell Physiol. 50, 265-279
   Abstract »    Full Text »    PDF »
S-Nitrosylation of AtSABP3 Antagonizes the Expression of Plant Immunity.
Y.-Q. Wang, A. Feechan, B.-W. Yun, R. Shafiei, A. Hofmann, P. Taylor, P. Xue, F.-Q. Yang, Z.-S. Xie, J. A. Pallas, et al. (2009)
J. Biol. Chem. 284, 2131-2137
   Abstract »    Full Text »    PDF »
Metabolism of Reactive Nitrogen Species in Pea Plants Under Abiotic Stress Conditions.
F. J. Corpas, M. Chaki, A. Fernandez-Ocana, R. Valderrama, J. M. Palma, A. Carreras, J. C. Begara-Morales, M. Airaki, L. A del Rio, and J. B. Barroso (2008)
Plant Cell Physiol. 49, 1711-1722
   Abstract »    Full Text »    PDF »
Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1.
J.-L. Qiu, L. Zhou, B.-W. Yun, H. B. Nielsen, B. K. Fiil, K. Petersen, J. MacKinlay, G. J. Loake, J. Mundy, and P. C. Morris (2008)
Plant Physiology 148, 212-222
   Abstract »    Full Text »    PDF »
Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins.
Y. Tada, S. H. Spoel, K. Pajerowska-Mukhtar, Z. Mou, J. Song, C. Wang, J. Zuo, and X. Dong (2008)
Science 321, 952-956
   Abstract »    Full Text »    PDF »
Modulation of Nitrosative Stress by S-Nitrosoglutathione Reductase Is Critical for Thermotolerance and Plant Growth in Arabidopsis.
U. Lee, C. Wie, B. O. Fernandez, M. Feelisch, and E. Vierling (2008)
PLANT CELL 20, 786-802
   Abstract »    Full Text »    PDF »
Nitric oxide function and signalling in plant disease resistance.
J. K. Hong, B.-W. Yun, J.-G. Kang, M. U. Raja, E. Kwon, K. Sorhagen, C. Chu, Y. Wang, and G. J. Loake (2008)
J. Exp. Bot. 59, 147-154
   Abstract »    Full Text »    PDF »
The hypersensitive response; the centenary is upon us but how much do we know?.
L. A. J. Mur, P. Kenton, A. J. Lloyd, H. Ougham, and E. Prats (2008)
J. Exp. Bot. 59, 501-520
   Abstract »    Full Text »    PDF »
Nitric oxide evolution and perception.
S. Neill, J. Bright, R. Desikan, J. Hancock, J. Harrison, and I. Wilson (2008)
J. Exp. Bot. 59, 25-35
   Abstract »    Full Text »    PDF »
S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration.
M. C. Romero-Puertas, M. Laxa, A. Matte, F. Zaninotto, I. Finkemeier, A. M.E. Jones, M. Perazzolli, E. Vandelle, K.-J. Dietz, and M. Delledonne (2007)
PLANT CELL 19, 4120-4130
   Abstract »    Full Text »    PDF »
The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response.
P. L. Nurmberg, K. A. Knox, B.-W. Yun, P. C. Morris, R. Shafiei, A. Hudson, and G. J. Loake (2007)
PNAS 104, 18795-18800
   Abstract »    Full Text »    PDF »
Protein S-Nitrosylation: Potential Targets and Roles in Signal Transduction.
A. K. Grennan (2007)
Plant Physiology 144, 1237-1239
   Full Text »    PDF »
S-Nitrosoglutathione Reductase Affords Protection against Pathogens in Arabidopsis, Both Locally and Systemically.
C. Rusterucci, M. C. Espunya, M. Diaz, M. Chabannes, and M. C. Martinez (2007)
Plant Physiology 143, 1282-1292
   Abstract »    Full Text »    PDF »
Cross Talk between Reactive Nitrogen and Oxygen Species during the Hypersensitive Disease Resistance Response.
F. Zaninotto, S. L. Camera, A. Polverari, and M. Delledonne (2006)
Plant Physiology 141, 379-383
   Full Text »    PDF »
Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress.
J. B Barroso, F. J Corpas, A. Carreras, M. Rodriguez-Serrano, F. J Esteban, A. Fernandez-Ocana, M. Chaki, M. C Romero-Puertas, R. Valderrama, L. M Sandalio, et al. (2006)
J. Exp. Bot. 57, 1785-1793
   Abstract »    Full Text »    PDF »
S-Nitrosylation: an emerging redox-based post-translational modification in plants.
Y. Wang, B.-W. Yun, E. Kwon, J. K. Hong, J. Yoon, and G. J Loake (2006)
J. Exp. Bot. 57, 1777-1784
   Abstract »    Full Text »    PDF »
Differential Inhibition of Arabidopsis Methionine Adenosyltransferases by Protein S-Nitrosylation.
C. Lindermayr, G. Saalbach, G. Bahnweg, and J. Durner (2006)
J. Biol. Chem. 281, 4285-4291
   Abstract »    Full Text »    PDF »
NO way to live; the various roles of nitric oxide in plant-pathogen interactions.
L. A. J. Mur, T. L. W. Carver, and E. Prats (2006)
J. Exp. Bot. 57, 489-505
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882