Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 102 (23): 8204-8209

Copyright © 2005 by the National Academy of Sciences.


CELL BIOLOGY

The coordinate regulation of the p53 and mTOR pathways in cells

Zhaohui Feng * {dagger}, Haiyan Zhang * {dagger}, {ddagger}, Arnold J. Levine *, §, ¶, and Shengkan Jin *, {ddagger}, ¶

*Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, New Brunswick, NJ 08903; {ddagger}Department of Pharmacology, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, Piscataway, NJ 08854; and §The Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540

Contributed by Arnold J. Levine, April 7, 2005

Abstract: Cell growth and proliferation requires an intricate coordination between the stimulatory signals arising from nutrients and growth factors and the inhibitory signals arising from intracellular and extracellular stresses. Alteration of the coordination often causes cancer. In mammals, the mTOR (mammalian target of rapamycin) protein kinase is the central node in nutrient and growth factor signaling, and p53 plays a critical role in sensing genotoxic and other stresses. The results presented here demonstrate that activation of p53 inhibits mTOR activity and regulates its downstream targets, including autophagy, a tumor suppression process. Moreover, the mechanisms by which p53 regulates mTOR involves AMP kinase activation and requires the tuberous sclerosis (TSC) 1/TSC2 complex, both of which respond to energy deprivation in cells. In addition, glucose starvation not only signals to shut down mTOR, but also results in the transient phosphorylation of the p53 protein. Thus, p53 and mTOR signaling machineries can cross-talk and coordinately regulate cell growth, proliferation, and death.

Key Words: AMP-activated kinase • autophagy • tuberous sclerosis 1/tuberous sclerosis 2


Author contributions: A.J.L. and S.J. designed research; Z.F., H.Z., and S.J. performed research; A.J.L. and S.J. analyzed data; and A.J.L. wrote the paper.

Freely available online through the PNAS open access option.

Abbreviations: mTOR, mammalian target of rapamycin; TSC, tuberous sclerosis; AMPK, AMP-activated kinase; MEF, mouse embryonic fibroblast; PI3K, phosphoinositide 3-kinase; MAP, mitogen-activated protein.

{dagger} Z.F. and H.Z. contributed equally to this work.

To whom correspondence may be addressed. E-mail: alevine{at}ias.edu or jinsh{at}umdnj.edu.

© 2005 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Understanding the non-canonical pathways involved in p53-mediated tumor suppression.
K. M. Hager and W. Gu (2014)
Carcinogenesis 35, 740-746
   Abstract »    Full Text »    PDF »
Tumor suppressor p53 and its gain-of-function mutants in cancer.
J. Liu, C. Zhang, and Z. Feng (2014)
Acta Biochim Biophys Sin 46, 170-179
   Abstract »    Full Text »    PDF »
p53/TAp63 and AKT Regulate Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling through Two Independent Parallel Pathways in the Presence of DNA Damage.
M. Cam, H. K. Bid, L. Xiao, G. P. Zambetti, P. J. Houghton, and H. Cam (2014)
J. Biol. Chem. 289, 4083-4094
   Abstract »    Full Text »    PDF »
Maternal Overweight Induced by a Diet with High Content of Saturated Fat Activates Placental mTOR and eIF2alpha Signaling and Increases Fetal Growth in Rats.
F. Gaccioli, V. White, E. Capobianco, T. L. Powell, A. Jawerbaum, and T. Jansson (2013)
Biol Reprod 89, 96
   Abstract »    Full Text »    PDF »
Conserved versatile master regulators in signalling pathways in response to stress in plants.
V. E. Balderas-Hernandez, M. Alvarado-Rodriguez, and S. Fraire-Velazquez (2013)
AoB Plants 5, plt033
   Abstract »    Full Text »    PDF »
Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress.
K. Suzuki, A. Gerelchuluun, Z. Hong, L. Sun, J. Zenkoh, T. Moritake, and K. Tsuboi (2013)
Neuro Oncology 15, 1186-1199
   Abstract »    Full Text »    PDF »
Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury.
M. Ishihara, M. Urushido, K. Hamada, T. Matsumoto, Y. Shimamura, K. Ogata, K. Inoue, Y. Taniguchi, T. Horino, M. Fujieda, et al. (2013)
Am J Physiol Renal Physiol 305, F495-F509
   Abstract »    Full Text »    PDF »
The mTOR pathway negatively controls ATM by up-regulating miRNAs.
C. Shen and P. J. Houghton (2013)
PNAS 110, 11869-11874
   Abstract »    Full Text »    PDF »
Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish.
S.-H. Kim, M. L. Kowalski, R. P. Carson, L. R. Bridges, and K. C. Ess (2013)
Dis. Model. Mech. 6, 925-933
   Abstract »    Full Text »    PDF »
Evolutionarily conserved regulation of TOR signalling.
T. Takahara and T. Maeda (2013)
J. Biochem. 154, 1-10
   Abstract »    Full Text »    PDF »
Regulatory Coordination between Two Major Intracellular Homeostatic Systems: HEAT SHOCK RESPONSE AND AUTOPHAGY.
K. Dokladny, M. N. Zuhl, M. Mandell, D. Bhattacharya, S. Schneider, V. Deretic, and P. L. Moseley (2013)
J. Biol. Chem. 288, 14959-14972
   Abstract »    Full Text »    PDF »
Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses.
D. Kenzelmann Broz, S. Spano Mello, K. T. Bieging, D. Jiang, R. L. Dusek, C. A. Brady, A. Sidow, and L. D. Attardi (2013)
Genes & Dev. 27, 1016-1031
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus pUL29/28 and pUL38 Repression of p53-Regulated p21CIP1 and Caspase 1 Promoters during Infection.
J. P. Savaryn, J. M. Reitsma, T. M. Bigley, B. D. Halligan, Z. Qian, D. Yu, and S. S. Terhune (2013)
J. Virol. 87, 2463-2474
   Abstract »    Full Text »    PDF »
mTOR-Dependent Cell Survival Mechanisms.
C.-M. Hung, L. Garcia-Haro, C. A. Sparks, and D. A. Guertin (2012)
Cold Spring Harb Perspect Biol 4, a008771
   Abstract »    Full Text »    PDF »
Oncophagy: harnessing regulation of autophagy in cancer therapy.
J. S. Gundara, J. Zhao, B. G. Robinson, and S. B. Sidhu (2012)
Endocr. Relat. Cancer 19, R281-R295
   Abstract »    Full Text »    PDF »
Mitochondria and Mitophagy: The Yin and Yang of Cell Death Control.
D. A. Kubli and A. B. Gustafsson (2012)
Circ. Res. 111, 1208-1221
   Abstract »    Full Text »    PDF »
Heme Oxygenase-1 Promotes Survival of Renal Cancer Cells through Modulation of Apoptosis- and Autophagy-regulating Molecules.
P. Banerjee, A. Basu, B. Wegiel, L. E. Otterbein, K. Mizumura, M. Gasser, A. M. Waaga-Gasser, A. M. Choi, and S. Pal (2012)
J. Biol. Chem. 287, 32113-32123
   Abstract »    Full Text »    PDF »
Hypoxia suppresses conversion from proliferative arrest to cellular senescence.
O. V. Leontieva, V. Natarajan, Z. N. Demidenko, L. G. Burdelya, A. V. Gudkov, and M. V. Blagosklonny (2012)
PNAS 109, 13314-13318
   Abstract »    Full Text »    PDF »
Programmed Cell Death in Parkinson's Disease.
K. Venderova and D. S. Park (2012)
Cold Spring Harb Perspect Med 2, a009365
   Abstract »    Full Text »    PDF »
Mammalian target of rapamycin and the kidney. I. The signaling pathway.
W. Lieberthal and J. S. Levine (2012)
Am J Physiol Renal Physiol 303, F1-F10
   Abstract »    Full Text »    PDF »
F-Box Proteins Elongate Translation During Stress Recovery.
S. Meloche and P. P. Roux (2012)
Science Signaling 5, pe25
   Abstract »    Full Text »    PDF »
Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress.
F. Kruiswijk, L. Yuniati, R. Magliozzi, T. Y. Low, R. Lim, R. Bolder, S. Mohammed, C. G. Proud, A. J. R. Heck, M. Pagano, et al. (2012)
Science Signaling 5, ra40
   Abstract »    Full Text »    PDF »
Autophagy and cell growth - the yin and yang of nutrient responses.
T. P. Neufeld (2012)
J. Cell Sci. 125, 2359-2368
   Abstract »    Full Text »    PDF »
Atg7 Modulates p53 Activity to Regulate Cell Cycle and Survival During Metabolic Stress.
I. H. Lee, Y. Kawai, M. M. Fergusson, I. I. Rovira, A. J. R. Bishop, N. Motoyama, L. Cao, and T. Finkel (2012)
Science 336, 225-228
   Abstract »    Full Text »    PDF »
Regulation of mast cell survival and function by tuberous sclerosis complex 1.
J. Shin, H. Pan, and X.-P. Zhong (2012)
Blood 119, 3306-3314
   Abstract »    Full Text »    PDF »
MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme.
S.-S. Suh, J. Y. Yoo, G. J. Nuovo, Y.-J. Jeon, S. Kim, T. J. Lee, T. Kim, A. Bakacs, H. Alder, B. Kaur, et al. (2012)
PNAS 109, 5316-5321
   Abstract »    Full Text »    PDF »
p53 Negatively Regulates Transcription of the Pyruvate Dehydrogenase Kinase Pdk2.
T. Contractor and C. R. Harris (2012)
Cancer Res. 72, 560-567
   Abstract »    Full Text »    PDF »
Autophagy and Cancer.
L. Y. Mah and K. M. Ryan (2012)
Cold Spring Harb Perspect Biol 4, a008821
   Abstract »    Full Text »    PDF »
Regulation of PI 3-K, PTEN, p53, and mTOR in Malignant and Benign Tumors Deficient in Tuberin.
S. L. Habib, A. Yadav, L. Mahimainathan, and A. J. Valente (2011)
Genes & Cancer 2, 1051-1060
   Abstract »    Full Text »    PDF »
The dynamic nature of autophagy in cancer.
A. C. Kimmelman (2011)
Genes & Dev. 25, 1999-2010
   Abstract »    Full Text »    PDF »
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect.
C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang, A. J. Levine, W. Hu, and Z. Feng (2011)
PNAS 108, 16259-16264
   Abstract »    Full Text »    PDF »
mTOR and the differentiation of mesenchymal stem cells.
X. Xiang, J. Zhao, G. Xu, Y. Li, and W. Zhang (2011)
Acta Biochim Biophys Sin 43, 501-510
   Abstract »    Full Text »    PDF »
Metformin Amplifies Chemotherapy-Induced AMPK Activation and Antitumoral Growth.
G. Z. Rocha, M. M. Dias, E. R. Ropelle, F. Osorio-Costa, F. A. Rossato, A. E. Vercesi, M. J. A. Saad, and J. B. C. Carvalheira (2011)
Clin. Cancer Res. 17, 3993-4005
   Abstract »    Full Text »    PDF »
Heat shock protein 90-mediated inactivation of nuclear factor-{kappa}B switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells.
Q. Jiang, Y. Wang, T. Li, K. Shi, Z. Li, Y. Ma, F. Li, H. Luo, Y. Yang, and C. Xu (2011)
Mol. Biol. Cell 22, 1167-1180
   Abstract »    Full Text »    PDF »
The Role of p53 in Metabolic Regulation.
A. M. Puzio-Kuter (2011)
Genes & Cancer 2, 385-391
   Abstract »    Full Text »    PDF »
The Regulation of Aging and Longevity: A New and Complex Role of p53.
Z. Feng, M. Lin, and R. Wu (2011)
Genes & Cancer 2, 443-452
   Abstract »    Full Text »    PDF »
The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine.
C. Deisenroth and Y. Zhang (2011)
Genes & Cancer 2, 392-403
   Abstract »    Full Text »    PDF »
The translational response of the human mdm2 gene in HEK293T cells exposed to rapamycin: a role for the 5'-UTRs.
R. Genolet, G. Rahim, P. Gubler-Jaquier, and J. Curran (2011)
Nucleic Acids Res. 39, 989-1003
   Abstract »    Full Text »    PDF »
mRNA Translation and Energy Metabolism in Cancer: The Role of the MAPK and mTORC1 Pathways.
I. Topisirovic and N. Sonenberg (2011)
Cold Spring Harb Symp Quant Biol 76, 355-367
   Abstract »    Full Text »    PDF »
The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes.
A. J. Levine and A. M. Puzio-Kuter (2010)
Science 330, 1340-1344
   Abstract »    Full Text »    PDF »
p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation.
R. Scherz-Shouval, H. Weidberg, C. Gonen, S. Wilder, Z. Elazar, and M. Oren (2010)
PNAS 107, 18511-18516
   Abstract »    Full Text »    PDF »
Stressin' Sestrins take an aging fight.
A. V. Budanov, J. H. Lee, and M. Karin (2010)
EMBO Mol Med. 2, 388-400
   Abstract »    Full Text »    PDF »
Regulation of Mammalian Autophagy in Physiology and Pathophysiology.
B. Ravikumar, S. Sarkar, J. E. Davies, M. Futter, M. Garcia-Arencibia, Z. W. Green-Thompson, M. Jimenez-Sanchez, V. I. Korolchuk, M. Lichtenberg, S. Luo, et al. (2010)
Physiol Rev 90, 1383-1435
   Abstract »    Full Text »    PDF »
Inhibition of Human T-Cell Proliferation by Mammalian Target of Rapamycin (mTOR) Antagonists Requires Noncoding RNA Growth-Arrest-Specific Transcript 5 (GAS5).
M. Mourtada-Maarabouni, A. M. Hasan, F. Farzaneh, and G. T. Williams (2010)
Mol. Pharmacol. 78, 19-28
   Abstract »    Full Text »    PDF »
The Origins and Evolution of the p53 Family of Genes.
V. A. Belyi, P. Ak, E. Markert, H. Wang, W. Hu, A. Puzio-Kuter, and A. J. Levine (2010)
Cold Spring Harb Perspect Biol 2, a001198
   Abstract »    Full Text »    PDF »
Paradoxical suppression of cellular senescence by p53.
Z. N. Demidenko, L. G. Korotchkina, A. V. Gudkov, and M. V. Blagosklonny (2010)
PNAS 107, 9660-9664
   Abstract »    Full Text »    PDF »
Differential levels of transcription of p53-regulated genes by the arginine/proline polymorphism: p53 with arginine at codon 72 favors apoptosis.
B. S. Jeong, W. Hu, V. Belyi, R. Rabadan, and A. J. Levine (2010)
FASEB J 24, 1347-1353
   Abstract »    Full Text »    PDF »
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function.
W. Hu, C. Zhang, R. Wu, Y. Sun, A. Levine, and Z. Feng (2010)
PNAS 107, 7455-7460
   Abstract »    Full Text »    PDF »
Lysosome Dysfunction Triggers Atg7-dependent Neural Apoptosis.
K. C. Walls, A. P. Ghosh, A. V. Franklin, B. J. Klocke, M. Ballestas, J. J. Shacka, J. Zhang, and K. A. Roth (2010)
J. Biol. Chem. 285, 10497-10507
   Abstract »    Full Text »    PDF »
Jun Proteins Are Starvation-Regulated Inhibitors of Autophagy.
O. Yogev, R. Goldberg, S. Anzi, O. Yogev, and E. Shaulian (2010)
Cancer Res. 70, 2318-2327
   Abstract »    Full Text »    PDF »
ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS.
A. Alexander, S.-L. Cai, J. Kim, A. Nanez, M. Sahin, K. H. MacLean, K. Inoki, K.-L. Guan, J. Shen, M. D. Person, et al. (2010)
PNAS 107, 4153-4158
   Abstract »    Full Text »    PDF »
Everolimus.
P. J. Houghton (2010)
Clin. Cancer Res. 16, 1368-1372
   Abstract »    Full Text »    PDF »
p53 Regulation of the IGF-1/AKT/mTOR Pathways and the Endosomal Compartment.
Z. Feng (2010)
Cold Spring Harb Perspect Biol 2, a001057
   Abstract »    Full Text »    PDF »
Stage 2 Combination Testing of Rapamycin with Cytotoxic Agents by the Pediatric Preclinical Testing Program.
P. J. Houghton, C. L. Morton, R. Gorlick, R. B. Lock, H. Carol, C. P. Reynolds, M. H. Kang, J. M. Maris, S. T. Keir, E. A. Kolb, et al. (2010)
Mol. Cancer Ther. 9, 101-112
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase facilitates avian reovirus to induce mitogen-activated protein kinase (MAPK) p38 and MAPK kinase 3/6 signalling that is beneficial for virus replication.
W. T. Ji, L. H. Lee, F. L. Lin, L. Wang, and H. J. Liu (2009)
J. Gen. Virol. 90, 3002-3009
   Abstract »    Full Text »    PDF »
Regulation of Protein Synthesis by Ionizing Radiation.
S. Braunstein, M. L. Badura, Q. Xi, S. C. Formenti, and R. J. Schneider (2009)
Mol. Cell. Biol. 29, 5645-5656
   Abstract »    Full Text »    PDF »
mTOR signaling at a glance.
M. Laplante and D. M. Sabatini (2009)
J. Cell Sci. 122, 3589-3594
   Full Text »    PDF »
The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression.
S. L. Wade, K. Poorey, S. Bekiranov, and D. T. Auble (2009)
EMBO J. 28, 2919-2931
   Abstract »    Full Text »    PDF »
c-Jun NH2-Terminal Kinase Activation Is Essential for DRAM-Dependent Induction of Autophagy and Apoptosis in 2-Methoxyestradiol-Treated Ewing Sarcoma Cells.
S. Lorin, A. Borges, L. Ribeiro Dos Santos, S. Souquere, G. Pierron, K. M. Ryan, P. Codogno, and M. Djavaheri-Mergny (2009)
Cancer Res. 69, 6924-6931
   Abstract »    Full Text »    PDF »
Autophagy: molecular machinery, regulation, and implications for renal pathophysiology.
S. Periyasamy-Thandavan, M. Jiang, P. Schoenlein, and Z. Dong (2009)
Am J Physiol Renal Physiol 297, F244-F256
   Abstract »    Full Text »    PDF »
Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity.
S. Wilkinson, J. O'Prey, M. Fricker, and K. M. Ryan (2009)
Genes & Dev. 23, 1283-1288
   Abstract »    Full Text »    PDF »
The p53 Tumor Suppressor Causes Congenital Malformations in Rpl24-Deficient Mice and Promotes Their Survival.
M. Barkic, S. Crnomarkovic, K. Grabusic, I. Bogetic, L. Panic, S. Tamarut, M. Cokaric, I. Jeric, S. Vidak, and S. Volarevic (2009)
Mol. Cell. Biol. 29, 2489-2504
   Abstract »    Full Text »    PDF »
PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53.
C.-H. Yoon, E.-S. Lee, D.-S. Lim, and Y.-S. Bae (2009)
PNAS 106, 7852-7857
   Abstract »    Full Text »    PDF »
The role of autophagy in sensitizing malignant glioma cells to radiation therapy.
W. Zhuang, Z. Qin, and Z. Liang (2009)
Acta Biochim Biophys Sin 41, 341-351
   Abstract »    Full Text »    PDF »
Small-Molecule Activation of p53 Blocks Hypoxia-Inducible Factor 1{alpha} and Vascular Endothelial Growth Factor Expression In Vivo and Leads to Tumor Cell Apoptosis in Normoxia and Hypoxia.
J. Yang, A. Ahmed, E. Poon, N. Perusinghe, A. de Haven Brandon, G. Box, M. Valenti, S. Eccles, K. Rouschop, B. Wouters, et al. (2009)
Mol. Cell. Biol. 29, 2243-2253
   Abstract »    Full Text »    PDF »
Inactivation of p53 and Pten promotes invasive bladder cancer.
A. M. Puzio-Kuter, M. Castillo-Martin, C. W. Kinkade, X. Wang, T. H. Shen, T. Matos, M. M. Shen, C. Cordon-Cardo, and C. Abate-Shen (2009)
Genes & Dev. 23, 675-680
   Abstract »    Full Text »    PDF »
Tumor suppressors and cell metabolism: a recipe for cancer growth.
R. G. Jones and C. B. Thompson (2009)
Genes & Dev. 23, 537-548
   Abstract »    Full Text »    PDF »
Lipid Droplet Biogenesis Induced by Stress Involves Triacylglycerol Synthesis That Depends on Group VIA Phospholipase A2.
A. Gubern, M. Barcelo-Torns, J. Casas, D. Barneda, R. Masgrau, F. Picatoste, J. Balsinde, M. A. Balboa, and E. Claro (2009)
J. Biol. Chem. 284, 5697-5708
   Abstract »    Full Text »    PDF »
ARF Induces Autophagy by Virtue of Interaction with Bcl-xl.
J. Pimkina, O. Humbey, J. T. Zilfou, M. Jarnik, and M. E. Murphy (2009)
J. Biol. Chem. 284, 2803-2810
   Abstract »    Full Text »    PDF »
Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling.
S. Roos, O. Lagerlof, M. Wennergren, T. L. Powell, and T. Jansson (2009)
Am J Physiol Cell Physiol 297, C723-C731
   Abstract »    Full Text »    PDF »
Stress and IGF-I Differentially Control Cell Fate through Mammalian Target of Rapamycin (mTOR) and Retinoblastoma Protein (pRB).
M. Popowski, H. A. Ferguson, A. M. Sion, E. Koller, E. Knudsen, and C. L. Van Den Berg (2008)
J. Biol. Chem. 283, 28265-28273
   Abstract »    Full Text »    PDF »
A Gene Signature-Based Approach Identifies mTOR as a Regulator of p73.
J. M. Rosenbluth, D. J. Mays, M. F. Pino, L. J. Tang, and J. A. Pietenpol (2008)
Mol. Cell. Biol. 28, 5951-5964
   Abstract »    Full Text »    PDF »
Multiple Cyclin Kinase Inhibitors Promote Bile Acid-induced Apoptosis and Autophagy in Primary Hepatocytes via p53-CD95-dependent Signaling.
G. Zhang, M. A. Park, C. Mitchell, T. Walker, H. Hamed, E. Studer, M. Graf, M. Rahmani, S. Gupta, P. B. Hylemon, et al. (2008)
J. Biol. Chem. 283, 24343-24358
   Abstract »    Full Text »    PDF »
Premature aging in mice activates a systemic metabolic response involving autophagy induction.
G. Marino, A. P. Ugalde, N. Salvador-Montoliu, I. Varela, P. M. Quiros, J. Cadinanos, I. van der Pluijm, J. M.P. Freije, and C. Lopez-Otin (2008)
Hum. Mol. Genet. 17, 2196-2211
   Abstract »    Full Text »    PDF »
Diet, Autophagy, and Cancer: A Review.
K. Singletary and J. Milner (2008)
Cancer Epidemiol. Biomarkers Prev. 17, 1596-1610
   Abstract »    Full Text »    PDF »
PTEN Loss Does Not Predict for Response to RAD001 (Everolimus) in a Glioblastoma Orthotopic Xenograft Test Panel.
L. Yang, M. J. Clarke, B. L. Carlson, A. C. Mladek, M. A. Schroeder, P. Decker, W. Wu, G. J. Kitange, P. T. Grogan, J. M. Goble, et al. (2008)
Clin. Cancer Res. 14, 3993-4001
   Abstract »    Full Text »    PDF »
Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways.
G. Tang, Z. Yue, Z. Talloczy, T. Hagemann, W. Cho, A. Messing, D. L. Sulzer, and J. E. Goldman (2008)
Hum. Mol. Genet. 17, 1540-1555
   Abstract »    Full Text »    PDF »
Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth.
Z. Yan, H. Zou, F. Tian, J. R. Grandis, A. J. Mixson, P. Y. Lu, and L.-Y. Li (2008)
Mol. Cancer Ther. 7, 1355-1364
   Abstract »    Full Text »    PDF »
mTOR as a Target for Cancer Therapy.
P. J Houghton, J. B Easton, and R. T Kurmasheva (2008)
Am. Assoc. Cancer Res. Educ. Book 2008, 111-120
   Abstract »    Full Text »    PDF »
p53-Dependent and p53-Independent Activation of Autophagy by ARF.
W. M. Abida and W. Gu (2008)
Cancer Res. 68, 352-357
   Abstract »    Full Text »    PDF »
Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter.
Y. Yamada, K. D. Davis, and C. R. Coffman (2008)
Development 135, 207-216
   Abstract »    Full Text »    PDF »
The Roles of Therapy-Induced Autophagy and Necrosis in Cancer Treatment.
R. K. Amaravadi and C. B. Thompson (2007)
Clin. Cancer Res. 13, 7271-7279
   Abstract »    Full Text »    PDF »
Autophagic Cell Death of Human Pancreatic Tumor Cells Mediated by Oleandrin, a Lipid-Soluble Cardiac Glycoside.
R. A. Newman, Y. Kondo, T. Yokoyama, S. Dixon, C. Cartwright, D. Chan, M. Johansen, and Peiying Yang (2007)
Integr Cancer Ther 6, 354-364
   Abstract »    PDF »
Proautophagic Drugs: A Novel Means to Combat Apoptosis-Resistant Cancers, with a Special Emphasis on Glioblastomas.
F. Lefranc, V. Facchini, and R. Kiss (2007)
Oncologist 12, 1395-1403
   Abstract »    Full Text »    PDF »
Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53.
C.-H. Lee, K. Inoki, M. Karbowniczek, E. Petroulakis, N. Sonenberg, E. P. Henske, and K.-L. Guan (2007)
EMBO J. 26, 4812-4823
   Abstract »    Full Text »    PDF »
Declining p53 function in the aging process: A possible mechanism for the increased tumor incidence in older populations.
Z. Feng, W. Hu, A. K. Teresky, E. Hernando, C. Cordon-Cardo, and A. J. Levine (2007)
PNAS 104, 16633-16638
   Abstract »    Full Text »    PDF »
MicroRNA-34b and MicroRNA-34c Are Targets of p53 and Cooperate in Control of Cell Proliferation and Adhesion-Independent Growth.
D. C. Corney, A. Flesken-Nikitin, A. K. Godwin, W. Wang, and A. Yu. Nikitin (2007)
Cancer Res. 67, 8433-8438
   Abstract »    Full Text »    PDF »
Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth.
M. Buzzai, R. G. Jones, R. K. Amaravadi, J. J. Lum, R. J. DeBerardinis, F. Zhao, B. Viollet, and C. B. Thompson (2007)
Cancer Res. 67, 6745-6752
   Abstract »    Full Text »    PDF »
The Mammalian Target of Rapamycin Pathway as a Potential Target for Cancer Chemoprevention.
L. Kopelovich, J. R. Fay, C. C. Sigman, and J. A. Crowell (2007)
Cancer Epidemiol. Biomarkers Prev. 16, 1330-1340
   Abstract »    Full Text »    PDF »
Tissue-specific Autophagy Alterations and Increased Tumorigenesis in Mice Deficient in Atg4C/Autophagin-3.
G. Marino, N. Salvador-Montoliu, A. Fueyo, E. Knecht, N. Mizushima, and C. Lopez-Otin (2007)
J. Biol. Chem. 282, 18573-18583
   Abstract »    Full Text »    PDF »
Diverse Cytopathologies in Mitochondrial Disease Are Caused by AMP-activated Protein Kinase Signaling.
P. B. Bokko, L. Francione, E. Bandala-Sanchez, A. U. Ahmed, S. J. Annesley, X. Huang, T. Khurana, A. R. Kimmel, and P. R. Fisher (2007)
Mol. Biol. Cell 18, 1874-1886
   Abstract »    Full Text »    PDF »
The Regulation of AMPK {beta}1, TSC2, and PTEN Expression by p53: Stress, Cell and Tissue Specificity, and the Role of These Gene Products in Modulating the IGF-1-AKT-mTOR Pathways.
Z. Feng, W. Hu, E. de Stanchina, A. K. Teresky, S. Jin, S. Lowe, and A. J. Levine (2007)
Cancer Res. 67, 3043-3053
   Abstract »    Full Text »    PDF »
DNA Mismatch Repair Initiates 6-Thioguanine-Induced Autophagy through p53 Activation in Human Tumor Cells.
X. Zeng, T. Yan, J. E. Schupp, Y. Seo, and T. J. Kinsella (2007)
Clin. Cancer Res. 13, 1315-1321
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882