Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 102 (30): 10652-10657

Copyright © 2005 by the National Academy of Sciences.

From The Cover


MICROBIOLOGY

Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus

Matthew I. Bonaparte * {dagger}, Antony S. Dimitrov * {dagger}, Katharine N. Bossart {dagger}, {ddagger}, Gary Crameri {ddagger}, Bruce A. Mungall {ddagger}, Kimberly A. Bishop *, Vidita Choudhry §, Dimiter S. Dimitrov §, Lin-Fa Wang {ddagger}, Bryan T. Eaton {ddagger}, and Christopher C. Broder *, ¶

*Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814; {ddagger}Commonwealth Scientific and Industrial Research Organization Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia; and §Protein Interactions Group, Laboratory of Experimental and Computational Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702

Communicated by Bernard Moss, National Institutes of Health, Bethesda, MD, June 10, 2005

Received for publication June 3, 2005.

Abstract: Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus of the family Paramyxoviridae and are unique in that they exhibit a broad species tropism and cause fatal disease in both animals and humans. They infect cells through a pH-independent membrane fusion process mediated by their fusion and attachment glycoproteins. Previously, we demonstrated identical cell fusion tropisms for HeV and NiV and the protease-sensitive nature of their unknown cell receptor and identified a human cell line (HeLa-USU) that was nonpermissive for fusion and virus infection. Here, a microarray analysis was performed on the HeLa-USU cells, permissive HeLa-CCL2 cells, and two other permissive human cell lines. From this analysis, we identified a list of genes encoding known and predicted plasma membrane surface-expressed proteins that were highly expressed in all permissive cells and absent from the HeLa-USU cells and rank-ordered them based on their relative levels. Available expression vectors containing the first 10 genes were obtained and individually transfected into HeLa-USU cells. One clone, encoding human ephrin-B2 (EFNB2), was found capable of rendering HeLa-USU cells permissive for HeV- and NiV-mediated cell fusion as well as infection by live virus. A soluble recombinant EFNB2 could potently block fusion and infection and bind soluble recombinant HeV and NiV attachment glycoproteins with high affinity. Together, these data indicate that EFNB2 serves as a functional receptor for both HeV and NiV. The highly conserved nature of EFNB2 in humans and animals is consistent with the broad tropism exhibited by these emerging zoonotic viruses.


Freely available online through the PNAS open access option.

Abbreviations: EFNB2, ephrin-B2; F, fusion glycoprotein; G, attachment glycoprotein; sG, soluble G; Pab, polyclonal antibody; HeV, Hendra virus; NiV, Nipah virus; TCID50, tissue culture 50% infective dose.

{dagger} M.I.B., A.S.D., and K.N.B. contributed equally to this work.

To whom correspondence should be addressed. E-mail: cbroder{at}usuhs.mil.

© 2005 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A Recombinant Hendra Virus G Glycoprotein Subunit Vaccine Protects Nonhuman Primates against Hendra Virus Challenge.
C. E. Mire, J. B. Geisbert, K. N. Agans, Y.-R. Feng, K. A. Fenton, K. N. Bossart, L. Yan, Y.-P. Chan, C. C. Broder, and T. W. Geisbert (2014)
J. Virol. 88, 4624-4631
   Abstract »    Full Text »    PDF »
Characterization of African bat henipavirus GH-M74a glycoproteins.
M. Weis, L. Behner, M. Hoffmann, N. Kruger, G. Herrler, C. Drosten, J. F. Drexler, E. Dietzel, and A. Maisner (2014)
J. Gen. Virol. 95, 539-548
   Abstract »    Full Text »    PDF »
Surface Glycoproteins of an African Henipavirus Induce Syncytium Formation in a Cell Line Derived from an African Fruit Bat, Hypsignathus monstrosus.
N. Kruger, M. Hoffmann, M. Weis, J. F. Drexler, M. A. Muller, C. Winter, V. M. Corman, T. Gutzkow, C. Drosten, A. Maisner, et al. (2013)
J. Virol. 87, 13889-13891
   Abstract »    Full Text »    PDF »
Identification of a Region in the Stalk Domain of the Nipah Virus Receptor Binding Protein That Is Critical for Fusion Activation.
A. Talekar, I. DeVito, Z. Salah, S. G. Palmer, A. Chattopadhyay, J. K. Rose, R. Xu, I. A. Wilson, A. Moscona, and M. Porotto (2013)
J. Virol. 87, 10980-10996
   Abstract »    Full Text »    PDF »
Envelope Protein Dynamics in Paramyxovirus Entry.
P. Plattet and R. K. Plemper (2013)
mBio 4, e00413-13
   Abstract »    Full Text »    PDF »
Detection of Receptor-Induced Glycoprotein Conformational Changes on Enveloped Virions by Using Confocal Micro-Raman Spectroscopy.
X. Lu, Q. Liu, J. A. Benavides-Montano, A. V. Nicola, D. E. Aston, B. A. Rasco, and H. C. Aguilar (2013)
J. Virol. 87, 3130-3142
   Abstract »    Full Text »    PDF »
Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion but Do Not Block the Interaction with the Homologous F Protein.
Q. Zhu, S. B. Biering, A. M. Mirza, B. A. Grasseschi, P. J. Mahon, B. Lee, H. C. Aguilar, and R. M. Iorio (2013)
J. Virol. 87, 3119-3129
   Abstract »    Full Text »    PDF »
Nipah Virus Entry and Egress from Polarized Epithelial Cells.
B. Lamp, E. Dietzel, L. Kolesnikova, L. Sauerhering, S. Erbar, H. Weingartl, and A. Maisner (2013)
J. Virol. 87, 3143-3154
   Abstract »    Full Text »    PDF »
Nipah Virus Envelope-Pseudotyped Lentiviruses Efficiently Target ephrinB2-Positive Stem Cell Populations In Vitro and Bypass the Liver Sink When Administered In Vivo.
K. Palomares, F. Vigant, B. Van Handel, O. Pernet, K. Chikere, P. Hong, S. P. Sherman, M. Patterson, D. S. An, W. E. Lowry, et al. (2013)
J. Virol. 87, 2094-2108
   Abstract »    Full Text »    PDF »
Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein.
N. Ader, M. Brindley, M. Avila, C. Orvell, B. Horvat, G. Hiltensperger, J. Schneider-Schaulies, M. Vandevelde, A. Zurbriggen, R. K. Plemper, et al. (2013)
J. Virol. 87, 314-326
   Abstract »    Full Text »    PDF »
Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs.
J. A. Barr, C. Smith, G. A. Marsh, H. Field, and L.-F. Wang (2012)
J. Gen. Virol. 93, 2590-2594
   Abstract »    Full Text »    PDF »
Biochemical, Conformational, and Immunogenic Analysis of Soluble Trimeric Forms of Henipavirus Fusion Glycoproteins.
Y.-P. Chan, M. Lu, S. Dutta, L. Yan, J. Barr, M. Flora, Y.-R. Feng, K. Xu, D. B. Nikolov, L.-F. Wang, et al. (2012)
J. Virol. 86, 11457-11471
   Abstract »    Full Text »    PDF »
Cysteines in the Stalk of the Nipah Virus G Glycoprotein Are Located in a Distinct Subdomain Critical for Fusion Activation.
D. Maar, B. Harmon, D. Chu, B. Schulz, H. C. Aguilar, B. Lee, and O. A. Negrete (2012)
J. Virol. 86, 6632-6642
   Abstract »    Full Text »    PDF »
The Second Receptor Binding Site of the Globular Head of the Newcastle Disease Virus Hemagglutinin-Neuraminidase Activates the Stalk of Multiple Paramyxovirus Receptor Binding Proteins To Trigger Fusion.
M. Porotto, Z. Salah, I. DeVito, A. Talekar, S. G. Palmer, R. Xu, I. A. Wilson, and A. Moscona (2012)
J. Virol. 86, 5730-5741
   Abstract »    Full Text »    PDF »
Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion.
N. Ader, M. A. Brindley, M. Avila, F. C. Origgi, J. P. M. Langedijk, C. Orvell, M. Vandevelde, A. Zurbriggen, R. K. Plemper, and P. Plattet (2012)
J. Biol. Chem. 287, 16324-16334
   Abstract »    Full Text »    PDF »
Kaposi's sarcoma-associated herpesvirus interacts with EphrinA2 receptor to amplify signaling essential for productive infection.
S. Chakraborty, M. V. Veettil, V. Bottero, and B. Chandran (2012)
PNAS 109, E1163-E1172
   Abstract »    Full Text »    PDF »
Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment.
S. Diederich, L. Sauerhering, M. Weis, H. Altmeppen, N. Schaschke, T. Reinheckel, S. Erbar, and A. Maisner (2012)
J. Virol. 86, 3736-3745
   Abstract »    Full Text »    PDF »
Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus.
M. L. Colgrave, H. J. Snelling, B. J. Shiell, Y.-R. Feng, Y.-P. Chan, K. N. Bossart, K. Xu, D. B. Nikolov, C. C. Broder, and W. P. Michalski (2012)
Glycobiology 22, 572-584
   Abstract »    Full Text »    PDF »
Human Metapneumovirus (HMPV) Binding and Infection Are Mediated by Interactions between the HMPV Fusion Protein and Heparan Sulfate.
A. Chang, C. Masante, U. J. Buchholz, and R. E. Dutch (2012)
J. Virol. 86, 3230-3243
   Abstract »    Full Text »    PDF »
Residues in the Hendra Virus Fusion Protein Transmembrane Domain Are Critical for Endocytic Recycling.
A. Popa, J. R. Carter, S. E. Smith, L. Hellman, M. G. Fried, and R. E. Dutch (2012)
J. Virol. 86, 3014-3026
   Abstract »    Full Text »    PDF »
A Neutralizing Human Monoclonal Antibody Protects African Green Monkeys from Hendra Virus Challenge.
K. N. Bossart, T. W. Geisbert, H. Feldmann, Z. Zhu, F. Feldmann, J. B. Geisbert, L. Yan, Y.-R. Feng, D. Brining, D. Scott, et al. (2011)
Science Translational Medicine 3, 105ra103
   Abstract »    Full Text »    PDF »
Mutations in the G-H loop region of ephrin-B2 can enhance Nipah virus binding and infection.
J. Yuan, G. Marsh, D. Khetawat, C. C. Broder, L.-F. Wang, and Z. Shi (2011)
J. Gen. Virol. 92, 2142-2152
   Abstract »    Full Text »    PDF »
Infection of Primary Neurons Mediated by Nipah Virus Envelope Proteins: Role of Host Target Cells in Antiviral Action.
A. Talekar, A. Pessi, and M. Porotto (2011)
J. Virol. 85, 8422-8426
   Abstract »    Full Text »    PDF »
Nipah Virus Uses Leukocytes for Efficient Dissemination within a Host.
C. Mathieu, C. Pohl, J. Szecsi, S. Trajkovic-Bodennec, S. Devergnas, H. Raoul, F.-L. Cosset, D. Gerlier, T. F. Wild, and B. Horvat (2011)
J. Virol. 85, 7863-7871
   Abstract »    Full Text »    PDF »
Interactions of Human Complement with Virus Particles Containing the Nipah Virus Glycoproteins.
J. B. Johnson, H. C. Aguilar, B. Lee, and G. D. Parks (2011)
J. Virol. 85, 5940-5948
   Abstract »    Full Text »    PDF »
Triggering of the Newcastle Disease Virus Fusion Protein by a Chimeric Attachment Protein That Binds to Nipah Virus Receptors.
A. M. Mirza, H. C. Aguilar, Q. Zhu, P. J. Mahon, P. A. Rota, B. Lee, and R. M. Iorio (2011)
J. Biol. Chem. 286, 17851-17860
   Abstract »    Full Text »    PDF »
Henipavirus: A Review of Laboratory Animal Pathology.
M. M. Williamson and F. J. Torres-Velez (2010)
Veterinary Pathology 47, 871-880
   Abstract »    Full Text »    PDF »
A Quantitative and Kinetic Fusion Protein-Triggering Assay Can Discern Distinct Steps in the Nipah Virus Membrane Fusion Cascade.
H. C. Aguilar, V. Aspericueta, L. R. Robinson, K. E. Aanensen, and B. Lee (2010)
J. Virol. 84, 8033-8041
   Abstract »    Full Text »    PDF »
Tyrosine Residues in the Cytoplasmic Domains Affect Sorting and Fusion Activity of the Nipah Virus Glycoproteins in Polarized Epithelial Cells.
C. Weise, S. Erbar, B. Lamp, C. Vogt, S. Diederich, and A. Maisner (2010)
J. Virol. 84, 7634-7641
   Abstract »    Full Text »    PDF »
Differential Rates of Protein Folding and Cellular Trafficking for the Hendra Virus F and G Proteins: Implications for F-G Complex Formation.
S. D. Whitman, E. C. Smith, and R. E. Dutch (2009)
J. Virol. 83, 8998-9001
   Abstract »    Full Text »    PDF »
Integrin {alpha}v{beta}1 promotes infection by human metapneumovirus.
G. Cseke, M. S. Maginnis, R. G. Cox, S. J. Tollefson, A. B. Podsiad, D. W. Wright, T. S. Dermody, and J. V. Williams (2009)
PNAS 106, 1566-1571
   Abstract »    Full Text »    PDF »
A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in Triggering the Fusion Glycoprotein (F).
H. C. Aguilar, Z. A. Ataman, V. Aspericueta, A. Q. Fang, M. Stroud, O. A. Negrete, R. A. Kammerer, and B. Lee (2009)
J. Biol. Chem. 284, 1628-1635
   Abstract »    Full Text »    PDF »
Crystal Structure and Carbohydrate Analysis of Nipah Virus Attachment Glycoprotein: a Template for Antiviral and Vaccine Design.
T. A. Bowden, M. Crispin, D. J. Harvey, A. R. Aricescu, J. M. Grimes, E. Y. Jones, and D. I. Stuart (2008)
J. Virol. 82, 11628-11636
   Abstract »    Full Text »    PDF »
Residues in the Stalk Domain of the Hendra Virus G Glycoprotein Modulate Conformational Changes Associated with Receptor Binding.
K. A. Bishop, A. C. Hickey, D. Khetawat, J. R. Patch, K. N. Bossart, Z. Zhu, L.-F. Wang, D. S. Dimitrov, and C. C. Broder (2008)
J. Virol. 82, 11398-11409
   Abstract »    Full Text »    PDF »
Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3.
K. Xu, K. R. Rajashankar, Y.-P. Chan, J. P. Himanen, C. C. Broder, and D. B. Nikolov (2008)
PNAS 105, 9953-9958
   Abstract »    Full Text »    PDF »
Histopathologic and Immunohistochemical Characterization of Nipah Virus Infection in the Guinea Pig.
F. J. Torres-Velez, W.-J. Shieh, P. E. Rollin, T. Morken, C. Brown, T. G. Ksiazek, and S. R. Zaki (2008)
Veterinary Pathology 45, 576-585
   Abstract »    Full Text »    PDF »
Functional Interaction between Paramyxovirus Fusion and Attachment Proteins.
J. K. Lee, A. Prussia, T. Paal, L. K. White, J. P. Snyder, and R. K. Plemper (2008)
J. Biol. Chem. 283, 16561-16572
   Abstract »    Full Text »    PDF »
Exceptionally Potent Cross-Reactive Neutralization of Nipah and Hendra Viruses by a Human Monoclonal Antibody.
Z. Zhu, K. N. Bossart, K. A. Bishop, G. Crameri, A. S. Dimitrov, J. A. McEachern, Y. Feng, D. Middleton, L.-F. Wang, C. C. Broder, et al. (2008)
The Journal of Infectious Disease 197, 846-853
   Abstract »    Full Text »    PDF »
Single Amino Acid Changes in the Nipah and Hendra Virus Attachment Glycoproteins Distinguish EphrinB2 from EphrinB3 Usage.
O. A. Negrete, D. Chu, H. C. Aguilar, and B. Lee (2007)
J. Virol. 81, 10804-10814
   Abstract »    Full Text »    PDF »
A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans.
K. B. Chua, G. Crameri, A. Hyatt, M. Yu, M. R. Tompang, J. Rosli, J. McEachern, S. Crameri, V. Kumarasamy, B. T. Eaton, et al. (2007)
PNAS 104, 11424-11429
   Abstract »    Full Text »    PDF »
Identification of Hendra Virus G Glycoprotein Residues That Are Critical for Receptor Binding.
K. A. Bishop, T. S. Stantchev, A. C. Hickey, D. Khetawat, K. N. Bossart, V. Krasnoperov, P. Gill, Y. R. Feng, L. Wang, B. T. Eaton, et al. (2007)
J. Virol. 81, 5893-5901
   Abstract »    Full Text »    PDF »
Polybasic KKR Motif in the Cytoplasmic Tail of Nipah Virus Fusion Protein Modulates Membrane Fusion by Inside-Out Signaling.
H. C. Aguilar, K. A. Matreyek, D. Y. Choi, C. M. Filone, S. Young, and B. Lee (2007)
J. Virol. 81, 4520-4532
   Abstract »    Full Text »    PDF »
Inhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3.
B. Sawatsky, A. Grolla, N. Kuzenko, H. Weingartl, and M. Czub (2007)
J. Gen. Virol. 88, 582-591
   Abstract »    Full Text »    PDF »
Mutation of YMYL in the Nipah Virus Matrix Protein Abrogates Budding and Alters Subcellular Localization.
M. J. Ciancanelli and C. F. Basler (2006)
J. Virol. 80, 12070-12078
   Abstract »    Full Text »    PDF »
Feline Model of Acute Nipah Virus Infection and Protection with a Soluble Glycoprotein-Based Subunit Vaccine.
B. A. Mungall, D. Middleton, G. Crameri, J. Bingham, K. Halpin, G. Russell, D. Green, J. McEachern, L. I. Pritchard, B. T. Eaton, et al. (2006)
J. Virol. 80, 12293-12302
   Abstract »    Full Text »    PDF »
Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy.
S. A. Connolly, G. P. Leser, H.-S. Yin, T. S. Jardetzky, and R. A. Lamb (2006)
PNAS 103, 17903-17908
   Abstract »    Full Text »    PDF »
Establishment of a Nipah virus rescue system.
M. Yoneda, V. Guillaume, F. Ikeda, Y. Sakuma, H. Sato, T. F. Wild, and C. Kai (2006)
PNAS 103, 16508-16513
   Abstract »    Full Text »    PDF »
Inhibition of Hendra Virus Fusion.
M. Porotto, L. Doctor, P. Carta, M. Fornabaio, O. Greengard, G. E. Kellogg, and A. Moscona (2006)
J. Virol. 80, 9837-9849
   Abstract »    Full Text »    PDF »
N-Glycans on Nipah Virus Fusion Protein Protect against Neutralization but Reduce Membrane Fusion and Viral Entry.
H. C. Aguilar, K. A. Matreyek, C. M. Filone, S. T. Hashimi, E. L. Levroney, O. A. Negrete, A. Bertolotti-Ciarlet, D. Y. Choi, I. McHardy, J. A. Fulcher, et al. (2006)
J. Virol. 80, 4878-4889
   Abstract »    Full Text »    PDF »
Potent Neutralization of Hendra and Nipah Viruses by Human Monoclonal Antibodies.
Z. Zhu, A. S. Dimitrov, K. N. Bossart, G. Crameri, K. A. Bishop, V. Choudhry, B. A. Mungall, Y.-R. Feng, A. Choudhary, M.-Y. Zhang, et al. (2006)
J. Virol. 80, 891-899
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882