Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 102 (44): 15791-15796

Copyright © 2005 by the National Academy of Sciences.

From The Cover


Dysregulation of TGF-{beta}1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice

Xiangchun Wang a b, Shinya Inoue a b, c, Jianguo Gu a, Eiji Miyoshi a, Katsuhisa Noda a, Wenzhe Li d, Yoko Mizuno-Horikawa a, Miyako Nakano a, Michio Asahi a, Motoko Takahashi a, e, Naofumi Uozumi a, Shinji Ihara a, Seung Ho Lee a, Yoshitaka Ikeda a, e, Yukihiro Yamaguchi a, f, Yoshiya Aze g, Yoshiaki Tomiyama c, Junichi Fujii a, h, Keiichiro Suzuki a, f, Akihiro Kondo d, Steven D. Shapiro i, Carlos Lopez-Otin j, Tomoyuki Kuwaki k, Masaru Okabe l, Koichi Honke a, m, and Naoyuki Taniguchi a, n

Departments of aBiochemistry, cInternal Medicine and Molecular Science, and dGlycotherapeutics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; eDepartment of Cell Biology, Saga University School of Medicine, Saga 809-8501, Japan; fDepartment of Biochemistry, Hyogo College of Medicine, Hyogo 663-8501, Japan; gFukui Safety Institute, Ono Pharmaceutical Co., Fukui 913-8538, Japan; hDepartment of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan; iDepartment of Medicine, Section of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115; jDepartamento de Bioquimica y Biologia Molecular, Instituto Universitario de Oncologia, Universidad de Oviedo, 33006 Oviedo, Spain; kDepartment of Molecular and Integrative Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; lDepartment of Experimental Genome Research, Genome Information Research Center, Osaka University, Osaka 565-0871, Japan; and mDepartment of Molecular Genetics, Kochi University Medical School, Kochi 783-8505, Japan

Communicated by David H. MacLennan, University of Toronto, Toronto, ON, Canada, August 24, 2005

Received for publication August 2, 2005.

Abstract: The core fucosylation ({alpha}1,6-fucosylation) of glycoproteins is widely distributed in mammalian tissues, and is altered under pathological conditions. To investigate physiological functions of the core fucose, we generated {alpha}1,6-fucosyltransferase (Fut8)-null mice and found that disruption of Fut8 induces severe growth retardation and death during postnatal development. Histopathological analysis revealed that Fut8-/- mice showed emphysema-like changes in the lung, verified by a physiological compliance analysis. Biochemical studies indicated that lungs from Fut8-/- mice exhibit a marked overexpression of matrix metalloproteinases (MMPs), such as MMP-12 and MMP-13, highly associated with lung-destructive phenotypes, and a down-regulation of extracellular matrix (ECM) proteins such as elastin, as well as retarded alveolar epithelia cell differentiation. These changes should be consistent with a deficiency in TGF-{beta}1 signaling, a pleiotropic factor that controls ECM homeostasis by down-regulating MMP expression and inducing ECM protein components. In fact, Fut8-/- mice have a marked dysregulation of TGF-{beta}1 receptor activation and signaling, as assessed by TGF-{beta}1 binding assays and Smad2 phosphorylation analysis. We also show that these TGF-{beta}1 receptor defects found in Fut8-/- cells can be rescued by reintroducing Fut8 into Fut8-/- cells. Furthermore, exogenous TGF-{beta}1 potentially rescued emphysema-like phenotype and concomitantly reduced MMP expression in Fut8-/- lung. We propose that the lack of core fucosylation of TGF-{beta}1 receptors is crucial for a developmental and progressive/destructive emphysema, suggesting that perturbation of this function could underlie certain cases of human emphysema.

Key Words: fucosylation • glycobiology • matrix metalloproteinase

Author contributions: X.W., J.G., E.M., and N.T. designed research; X.W., S. Inoue, K.N., W.L., Y.M.-H., M.N., N.U., S. Ihara, S.H.L., A.K., and T.K. performed research; X.W., S. Inoue, and M.O. contributed new reagents/analytic tools; X.W., J.G., M.A., M.T., Y.I., Y.Y., Y.A., Y.T., J.F., K.S., S.D.S., C.L.-O., and K.H. analyzed data; and X.W. and J.G. wrote the paper.

Freely available online through the PNAS open access option.

Abbreviations: ECM, extracellular matrix; MMP, matrix metalloproteinase; PA, 2-aminopyridine.

See Commentary on page 15721.

b X.W. and S. Inoue contributed equally to this work.

n To whom correspondence should be addressed at: Department of Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: proftani{at}

© 2005 by The National Academy of Sciences of the USA

Determination of Dynamic Changes in the Nature and Biosynthesis of Glycome of wt and rd1 Mice Retinae by Lectin Microarray Analysis.
S. Ahuja (2014)
Invest. Ophthalmol. Vis. Sci. 55, 654-657
   Full Text »    PDF »
{alpha}1,6-Fucosylation regulates neurite formation via the activin/phospho-Smad2 pathway in PC12 cells: the implicated dual effects of Fut8 for TGF-{beta}/activin-mediated signaling.
W. Gu, T. Fukuda, T. Isaji, H. Hashimoto, Y. Wang, and J. Gu (2013)
FASEB J 27, 3947-3958
   Abstract »    Full Text »    PDF »
N-Glycosylation of Gel1 or Gel2 is vital for cell wall {beta}-glucan synthesis in Aspergillus fumigatus.
W. Zhao, Y. Lu, H. Ouyang, H. Zhou, J. Yan, T. Du, and C. Jin (2013)
Glycobiology 23, 955-968
   Abstract »    Full Text »    PDF »
Loss of Branched O-Mannosyl Glycans in Astrocytes Accelerates Remyelination.
K. Kanekiyo, K.-i. Inamori, S. Kitazume, K. Sato, J. Maeda, M. Higuchi, Y. Kizuka, H. Korekane, I. Matsuo, K. Honke, et al. (2013)
J. Neurosci. 33, 10037-10047
   Abstract »    Full Text »    PDF »
{alpha}-1,6-Fucosyltransferase (FUT8) Inhibits Hemoglobin Production during Differentiation of Murine and K562 Human Erythroleukemia Cells.
H. Sasaki, T. Toda, T. Furukawa, Y. Mawatari, R. Takaesu, M. Shimizu, R. Wada, D. Kato, T. Utsugi, M. Ohtsu, et al. (2013)
J. Biol. Chem. 288, 16839-16847
   Abstract »    Full Text »    PDF »
Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer.
C.-Y. Chen, Y.-H. Jan, Y.-H. Juan, C.-J. Yang, M.-S. Huang, C.-J. Yu, P.-C. Yang, M. Hsiao, T.-L. Hsu, and C.-H. Wong (2013)
PNAS 110, 630-635
   Abstract »    Full Text »    PDF »
Metabolic Inhibition of Sialyl-Lewis X Biosynthesis by 5-Thiofucose Remodels the Cell Surface and Impairs Selectin-Mediated Cell Adhesion.
W. F. Zandberg, J. Kumarasamy, B. M. Pinto, and D. J. Vocadlo (2012)
J. Biol. Chem. 287, 40021-40030
   Abstract »    Full Text »    PDF »
A Novel Core Fucose-specific Lectin from the Mushroom Pholiota squarrosa.
Y. Kobayashi, H. Tateno, H. Dohra, K. Moriwaki, E. Miyoshi, J. Hirabayashi, and H. Kawagishi (2012)
J. Biol. Chem. 287, 33973-33982
   Abstract »    Full Text »    PDF »
Molecular mechanisms of MMP9 overexpression and its role in emphysema pathogenesis of Smad3-deficient mice.
B. Xu, H. Chen, W. Xu, W. Zhang, S. Buckley, S. G. Zheng, D. Warburton, M. Kolb, J. Gauldie, and W. Shi (2012)
Am J Physiol Lung Cell Mol Physiol 303, L89-L96
   Abstract »    Full Text »    PDF »
Fine tuning of cell signals by glycosylation.
K. Furukawa, Y. Ohkawa, Y. Yamauchi, K. Hamamura, Y. Ohmi, and K. Furukawa (2012)
J. Biochem. 151, 573-578
   Abstract »    Full Text »    PDF »
Roles of N-Acetylglucosaminyltransferase III in Epithelial-to-Mesenchymal Transition Induced by Transforming Growth Factor {beta}1 (TGF-{beta}1) in Epithelial Cell Lines.
Q. Xu, T. Isaji, Y. Lu, W. Gu, M. Kondo, T. Fukuda, Y. Du, and J. Gu (2012)
J. Biol. Chem. 287, 16563-16574
   Abstract »    Full Text »    PDF »
Sensitivity of Heterozygous {alpha}1,6-Fucosyltransferase Knock-out Mice to Cigarette Smoke-induced Emphysema: IMPLICATION OF ABERRANT TRANSFORMING GROWTH FACTOR-{beta} SIGNALING AND MATRIX METALLOPROTEINASE GENE EXPRESSION.
C. Gao, T. Maeno, F. Ota, M. Ueno, H. Korekane, S. Takamatsu, K. Shirato, A. Matsumoto, S. Kobayashi, K. Yoshida, et al. (2012)
J. Biol. Chem. 287, 16699-16708
   Abstract »    Full Text »    PDF »
N-Glycans of SREC-I (scavenger receptor expressed by endothelial cells): Essential role for ligand binding, trafficking and stability.
M. Sano, H. Korekane, K. Ohtsubo, Y. Yamaguchi, M. Kato, Y. Shibukawa, M. Tajiri, H. Adachi, Y. Wada, M. Asahi, et al. (2012)
Glycobiology 22, 714-724
   Abstract »    Full Text »    PDF »
Core Fucosylation of {mu} Heavy Chains Regulates Assembly and Intracellular Signaling of Precursor B Cell Receptors.
W. Li, Q. Liu, Y. Pang, J. Jin, H. Wang, H. Cao, Z. Li, X. Wang, B. Ma, Y. Chi, et al. (2012)
J. Biol. Chem. 287, 2500-2508
   Abstract »    Full Text »    PDF »
Airway epithelial cells suppress T cell proliferation by an IFN{gamma}/STAT1/TGF{beta}-dependent mechanism.
C. M. Deppong, J. Xu, S. L. Brody, and J. M. Green (2012)
Am J Physiol Lung Cell Mol Physiol 302, L167-L173
   Abstract »    Full Text »    PDF »
GDP-mannose-4,6-dehydratase (GMDS) Deficiency Renders Colon Cancer Cells Resistant to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor- and CD95-mediated Apoptosis by Inhibiting Complex II Formation.
K. Moriwaki, S. Shinzaki, and E. Miyoshi (2011)
J. Biol. Chem. 286, 43123-43133
   Abstract »    Full Text »    PDF »
Functional expression of L-fucokinase/guanosine 5'-diphosphate-L-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides.
T.-W. Liu, H. Ito, Y. Chiba, T. Kubota, T. Sato, and H. Narimatsu (2011)
Glycobiology 21, 1228-1236
   Abstract »    Full Text »    PDF »
{alpha}1,6-Fucosyltransferase-deficient Mice Exhibit Multiple Behavioral Abnormalities Associated with a Schizophrenia-like Phenotype: IMPORTANCE OF THE BALANCE BETWEEN THE DOPAMINE AND SEROTONIN SYSTEMS.
T. Fukuda, H. Hashimoto, N. Okayasu, A. Kameyama, H. Onogi, O. Nakagawasai, T. Nakazawa, T. Kurosawa, Y. Hao, T. Isaji, et al. (2011)
J. Biol. Chem. 286, 18434-18443
   Abstract »    Full Text »    PDF »
A novel glycosylation signal regulates transforming growth factor {beta} receptors as evidenced by endo-{beta}-galactosidase C expression in rodent cells.
S. Watanabe, M. Misawa, T. Matsuzaki, T. Sakurai, T. Muramatsu, and M. Sato (2011)
Glycobiology 21, 482-492
   Abstract »    Full Text »    PDF »
Blocking core fucosylation of TGF-{beta}1 receptors downregulates their functions and attenuates the epithelial-mesenchymal transition of renal tubular cells.
H. Lin, D. Wang, T. Wu, C. Dong, N. Shen, Y. Sun, Y. Sun, H. Xie, N. Wang, and L. Shan (2011)
Am J Physiol Renal Physiol 300, F1017-F1025
   Abstract »    Full Text »    PDF »
Insights from Selective Non-phosphinic Inhibitors of MMP-12 Tailored to Fit with an S1' Loop Canonical Conformation.
L. Devel, S. Garcia, B. Czarny, F. Beau, E. Lajeunesse, L. Vera, D. Georgiadis, E. Stura, and V. Dive (2010)
J. Biol. Chem. 285, 35900-35909
   Abstract »    Full Text »    PDF »
Neural-specific {alpha}3-fucosylation of N-linked glycans in the Drosophila embryo requires Fucosyltransferase A and influences developmental signaling associated with O-glycosylation.
D. Rendic, M. Sharrow, T. Katoh, B. Overcarsh, K. Nguyen, J. Kapurch, K. Aoki, I. B. H. Wilson, and M. Tiemeyer (2010)
Glycobiology 20, 1353-1365
   Abstract »    Full Text »    PDF »
Fucosylated glycan inhibition of human hepatocellular carcinoma cell migration through binding to chemokine receptors.
L. H. Wu, B. Z. Shi, Q. L. Zhao, and X. Z. Wu (2010)
Glycobiology 20, 215-223
   Abstract »    Full Text »    PDF »
Protective effect of N-glycan bisecting GlcNAc residues on {beta}-amyloid production in Alzheimer's disease.
K. Akasaka-Manya, H. Manya, Y. Sakurai, B. S Wojczyk, Y. Kozutsumi, Y. Saito, N. Taniguchi, S. Murayama, S. L Spitalnik, and T. Endo (2010)
Glycobiology 20, 99-106
   Abstract »    Full Text »    PDF »
From the {gamma}-Glutamyl Cycle to the Glycan Cycle: A Road with Many Turns and Pleasant Surprises.
N. Taniguchi (2009)
J. Biol. Chem. 284, 34469-34478
   Full Text »    PDF »
Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain.
S. Ohata, S. Kinoshita, R. Aoki, H. Tanaka, H. Wada, S. Tsuruoka-Kinoshita, T. Tsuboi, S. Watabe, and H. Okamoto (2009)
Development 136, 1653-1663
   Abstract »    Full Text »    PDF »
MicroRNA-127 modulates fetal lung development.
M. Bhaskaran, Y. Wang, H. Zhang, T. Weng, P. Baviskar, Y. Guo, D. Gou, and L. Liu (2009)
Physiol Genomics 37, 268-278
   Abstract »    Full Text »    PDF »
A Strategy for Precise and Large Scale Identification of Core Fucosylated Glycoproteins.
W. Jia, Z. Lu, Y. Fu, H.-P. Wang, L.-H. Wang, H. Chi, Z.-F. Yuan, Z.-B. Zheng, L.-N. Song, H.-H. Han, et al. (2009)
Mol. Cell. Proteomics 8, 913-923
   Abstract »    Full Text »    PDF »
Requirement of Fut8 for the expression of vascular endothelial growth factor receptor-2: a new mechanism for the emphysema-like changes observed in Fut8-deficient mice.
X. Wang, T. Fukuda, W. Li, C.-x. Gao, A. Kondo, A. Matsumoto, E. Miyoshi, N. Taniguchi, and J. Gu (2009)
J. Biochem. 145, 643-651
   Abstract »    Full Text »    PDF »
Airspace Enlargement With Airway Cell Apoptosis in Klotho Mice: A Model of Aging Lung.
M. Ishii, Y. Yamaguchi, H. Yamamoto, Y. Hanaoka, and Y. Ouchi (2008)
J Gerontol A Biol Sci Med Sci 63, 1289-1298
   Abstract »    Full Text »    PDF »
The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties.
O. Le Saux, K. Teeters, S. Miyasato, J. Choi, G. Nakamatsu, J. A. Richardson, B. Starcher, E. C. Davis, E. K. Tam, and C. Jourdan-Le Saux (2008)
Am J Physiol Lung Cell Mol Physiol 295, L1007-L1017
   Abstract »    Full Text »    PDF »
Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin.
S. Hashimoto, F. Amaya, H. Matsuyama, H. Ueno, S. Kikuchi, M. Tanaka, Y. Watanabe, M. Ebina, A. Ishizaka, S. Tsukita, et al. (2008)
Am J Physiol Lung Cell Mol Physiol 295, L566-L574
   Abstract »    Full Text »    PDF »
Double Deficiency of Tetraspanins CD9 and CD81 Alters Cell Motility and Protease Production of Macrophages and Causes Chronic Obstructive Pulmonary Disease-like Phenotype in Mice.
Y. Takeda, P. He, I. Tachibana, B. Zhou, K. Miyado, H. Kaneko, M. Suzuki, S. Minami, T. Iwasaki, S. Goya, et al. (2008)
J. Biol. Chem. 283, 26089-26097
   Abstract »    Full Text »    PDF »
Biological Function of Fucosylation in Cancer Biology.
E. Miyoshi, K. Moriwaki, and T. Nakagawa (2008)
J. Biochem. 143, 725-729
   Abstract »    Full Text »    PDF »
Reduced {alpha}4 1 Integrin/VCAM-1 Interactions Lead to Impaired Pre-B Cell Repopulation in Alpha 1,6-Fucosyltransferase Deficient Mice.
W. Li, K. Ishihara, T. Yokota, T. Nakagawa, N. Koyama, J. Jin, Y. Mizuno-Horikawa, X. Wang, E. Miyoshi, N. Taniguchi, et al. (2008)
Glycobiology 18, 114-124
   Abstract »    Full Text »    PDF »
Analysis of N-glycan in serum glycoproteins from db/db mice and humans with type 2 diabetes.
N. Itoh, S. Sakaue, H. Nakagawa, M. Kurogochi, H. Ohira, K. Deguchi, S.-I. Nishimura, and M. Nishimura (2007)
Am J Physiol Endocrinol Metab 293, E1069-E1077
   Abstract »    Full Text »    PDF »
Carbohydrate Binding Specificity of a Fucose-specific Lectin from Aspergillus oryzae: A NOVEL PROBE FOR CORE FUCOSE.
K. Matsumura, K. Higashida, H. Ishida, Y. Hata, K. Yamamoto, M. Shigeta, Y. Mizuno-Horikawa, X. Wang, E. Miyoshi, J. Gu, et al. (2007)
J. Biol. Chem. 282, 15700-15708
   Abstract »    Full Text »    PDF »
Crystal structure of mammalian {alpha}1,6-fucosyltransferase, FUT8.
H. Ihara, Y. Ikeda, S. Toma, X. Wang, T. Suzuki, J. Gu, E. Miyoshi, T. Tsukihara, K. Honke, A. Matsumoto, et al. (2007)
Glycobiology 17, 455-466
   Abstract »    Full Text »    PDF »
Golgi GDP-fucose Transporter-deficient Mice Mimic Congenital Disorder of Glycosylation IIc/Leukocyte Adhesion Deficiency II.
C. C. Hellbusch, M. Sperandio, D. Frommhold, S. Yakubenia, M. K. Wild, D. Popovici, D. Vestweber, H.-J. Grone, K. von Figura, T. Lubke, et al. (2007)
J. Biol. Chem. 282, 10762-10772
   Abstract »    Full Text »    PDF »
Dynamic Developmental Elaboration of N-Linked Glycan Complexity in the Drosophila melanogaster Embryo.
K. Aoki, M. Perlman, J.-M. Lim, R. Cantu, L. Wells, and M. Tiemeyer (2007)
J. Biol. Chem. 282, 9127-9142
   Abstract »    Full Text »    PDF »
The Asn418-Linked N-Glycan of ErbB3 Plays a Crucial Role in Preventing Spontaneous Heterodimerization and Tumor Promotion.
S. Yokoe, M. Takahashi, M. Asahi, S. H. Lee, W. Li, D. Osumi, E. Miyoshi, and N. Taniguchi (2007)
Cancer Res. 67, 1935-1942
   Abstract »    Full Text »    PDF »
Respiratory Distress and Neonatal Lethality in Mice Lacking Golgi {alpha}1,2-Mannosidase IB Involved in N-Glycan Maturation.
L. O. Tremblay, E. N. Kovacs, E. Daniels, N. K. Wong, M. Sutton-Smith, H. R. Morris, A. Dell, E. Marcinkiewicz, N. G. Seidah, C. McKerlie, et al. (2007)
J. Biol. Chem. 282, 2558-2566
   Abstract »    Full Text »    PDF »
Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted.
K. J. Greenlee, Z. Werb, and F. Kheradmand (2007)
Physiol Rev 87, 69-98
   Abstract »    Full Text »    PDF »
Deletion of Core Fucosylation on {alpha}3beta1 Integrin Down-regulates Its Functions.
Y. Zhao, S. Itoh, X. Wang, T. Isaji, E. Miyoshi, Y. Kariya, K. Miyazaki, N. Kawasaki, N. Taniguchi, and J. Gu (2006)
J. Biol. Chem. 281, 38343-38350
   Abstract »    Full Text »    PDF »
Fucosylation in prokaryotes and eukaryotes.
B. Ma, J. L. Simala-Grant, and D. E. Taylor (2006)
Glycobiology 16, 158R-184R
   Abstract »    Full Text »    PDF »
Fucosylation of N-Glycans Regulates the Secretion of Hepatic Glycoproteins into Bile Ducts.
T. Nakagawa, N. Uozumi, M. Nakano, Y. Mizuno-Horikawa, N. Okuyama, T. Taguchi, J. Gu, A. Kondo, N. Taniguchi, and E. Miyoshi (2006)
J. Biol. Chem. 281, 29797-29806
   Abstract »    Full Text »    PDF »
Down-regulation of trypsinogen expression is associated with growth retardation in {alpha}1,6-fucosyltransferase-deficient mice: attenuation of proteinase-activated receptor 2 activity.
W. Li, T. Nakagawa, N. Koyama, X. Wang, J. Jin, Y. Mizuno-Horikawa, J. Gu, E. Miyoshi, I. Kato, K. Honke, et al. (2006)
Glycobiology 16, 1007-1019
   Abstract »    Full Text »    PDF »
ST6Gal-I Restrains CD22-Dependent Antigen Receptor Endocytosis and Shp-1 Recruitment in Normal and Pathogenic Immune Signaling.
P. K. Grewal, M. Boton, K. Ramirez, B. E. Collins, A. Saito, R. S. Green, K. Ohtsubo, D. Chui, and J. D. Marth (2006)
Mol. Cell. Biol. 26, 4970-4981
   Abstract »    Full Text »    PDF »
Essential and mutually compensatory roles of {alpha}-mannosidase II and {alpha}-mannosidase IIx in N-glycan processing in vivo in mice.
T. O. Akama, H. Nakagawa, N. K. Wong, M. Sutton-Smith, A. Dell, H. R. Morris, J. Nakayama, S.-I. Nishimura, A. Pai, K. W. Moremen, et al. (2006)
PNAS 103, 8983-8988
   Abstract »    Full Text »    PDF »
Cell-Cell Interaction-dependent Regulation of N-Acetylglucosaminyltransferase III and the Bisected N-Glycans in GE11 Epithelial Cells: INVOLVEMENT OF E-CADHERIN-MEDIATED CELL ADHESION.
J. Iijima, Y. Zhao, T. Isaji, A. Kameyama, S. Nakaya, X. Wang, H. Ihara, X. Cheng, T. Nakagawa, E. Miyoshi, et al. (2006)
J. Biol. Chem. 281, 13038-13046
   Abstract »    Full Text »    PDF »
Development of Selective Inhibitors and Substrate of Matrix Metalloproteinase-12.
L. Devel, V. Rogakos, A. David, A. Makaritis, F. Beau, P. Cuniasse, A. Yiotakis, and V. Dive (2006)
J. Biol. Chem. 281, 11152-11160
   Abstract »    Full Text »    PDF »
Protein O-Fucosyltransferase 2 Adds O-Fucose to Thrombospondin Type 1 Repeats.
Y. Luo, K. Koles, W. Vorndam, R. S. Haltiwanger, and V. M. Panin (2006)
J. Biol. Chem. 281, 9393-9399
   Abstract »    Full Text »    PDF »
Reaction mechanism and substrate specificity for nucleotide sugar of mammalian {alpha}1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8.
H. Ihara, Y. Ikeda, and N. Taniguchi (2006)
Glycobiology 16, 333-342
   Abstract »    Full Text »    PDF »
Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in fut8-/- mice..
S. H. Lee, M. Takahashi, K. Honke, E. Miyoshi, D. Osumi, H. Sakiyama, A. Ekuni, X. Wang, S. Inoue, J. Gu, et al. (2006)
J. Biochem. 139, 391-398
   Abstract »    Full Text »    PDF »
Core Fucosylation Regulates Epidermal Growth Factor Receptor-mediated Intracellular Signaling.
X. Wang, J. Gu, H. Ihara, E. Miyoshi, K. Honke, and N. Taniguchi (2006)
J. Biol. Chem. 281, 2572-2577
   Abstract »    Full Text »    PDF »
The search for glycan function: Fucosylation of the TGF-{beta}1 receptor is required for receptor activation.
H. Schachter (2005)
PNAS 102, 15721-15722
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882