Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 102 (45): 16426-16431

Copyright © 2005 by the National Academy of Sciences.

From The Cover


NEUROSCIENCE

A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis

Ngan Vo {dagger} {ddagger}, Matthew E. Klein {dagger} {ddagger}, §, Olga Varlamova {dagger}, David M. Keller {dagger}, Tadashi Yamamoto ¶, Richard H. Goodman {dagger}, ||, and Soren Impey {dagger}, ||

{dagger}Vollum Institute, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; §Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202; and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan

Contributed by Richard H. Goodman, September 27, 2005

Abstract: MicroRNAs (miRNAs) regulate cellular fate by controlling the stability or translation of mRNA transcripts. Although the spatial and temporal patterning of miRNA expression is tightly controlled, little is known about signals that induce their expression nor mechanisms of their transcriptional regulation. Furthermore, few miRNA targets have been validated experimentally. The miRNA, miR132, was identified through a genome-wide screen as a target of the transcription factor, cAMP-response element binding protein (CREB). miR132 is enriched in neurons and, like many neuronal CREB targets, is highly induced by neurotrophins. Expression of miR132 in cortical neurons induced neurite outgrowth. Conversely, inhibition of miR132 function attenuated neuronal outgrowth. We provide evidence that miR132 regulates neuronal morphogenesis by decreasing levels of the GTPase-activating protein, p250GAP. These data reveal that a CREB-regulated miRNA regulates neuronal morphogenesis by responding to extrinsic trophic cues.

Key Words: neurite • neurotrophin • plasticity • microRNA • transcription


Author contributions: R.H.G. and S.I. designed research; N.V., M.E.K., O.V., D.M.K., and S.I. performed research; T.Y. contributed new reagents/analytical tools; N.V., M.E.K., O.V., D.M.K., and S.I. analyzed data; and N.V., M.E.K., R.H.G., and S.I. wrote the paper.

Conflict of interest statement: No conflicts declared.

Abbreviations: CREB, cAMP-response element binding protein; miRNA, microRNA; GAP, GTPase-activating protein; BDNF, brain-derived neurotrophic factor; shRNA, short hairpin RNA; CBP, CREB binding protein; premiR, pre-miRNA.

Data deposition: The sequence reported in this paper has been deposited in the GenBank database (accession no. DQ223059 [GenBank] ).

{ddagger} N.V. and M.E.K. contributed equally to this work.

|| To whom correspondence may be addressed: E-mail: goodmanr{at}ohsu.edu or impeys{at}ohsu.edu.

© 2005 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dissecting the chromatin interactome of microRNA genes.
D. Chen, L.-Y. Fu, Z. Zhang, G. Li, H. Zhang, L. Jiang, A. P. Harrison, H. P. Shanahan, C. Klukas, H.-Y. Zhang, et al. (2014)
Nucleic Acids Res. 42, 3028-3043
   Abstract »    Full Text »    PDF »
BDNF Promotes Axon Branching of Retinal Ganglion Cells via miRNA-132 and p250GAP.
K. J. Marler, P. Suetterlin, A. Dopplapudi, A. Rubikaite, J. Adnan, N. A. Maiorano, A. S. Lowe, I. D. Thompson, M. Pathania, A. Bordey, et al. (2014)
J. Neurosci. 34, 969-979
   Abstract »    Full Text »    PDF »
MicroRNA-132 Is Enriched in Developing Axons, Locally Regulates Rasa1 mRNA, and Promotes Axon Extension.
M. L. Hancock, N. Preitner, J. Quan, and J. G. Flanagan (2014)
J. Neurosci. 34, 66-78
   Abstract »    Full Text »    PDF »
Role of microRNA-136-3p on the Expression of Luteinizing Hormone-Human Chorionic Gonadotropin Receptor mRNA in Rat Ovaries.
Y. Kitahara, K. Nakamura, K. Kogure, and T. Minegishi (2013)
Biol Reprod 89, 114
   Abstract »    Full Text »    PDF »
MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9.
S. Chai, X. A. Cambronne, S. W. Eichhorn, and R. H. Goodman (2013)
PNAS 110, 17898-17903
   Abstract »    Full Text »    PDF »
Alteration of the microRNA network during the progression of Alzheimer's disease.
P. Lau, K. Bossers, R. Janky, E. Salta, C. S. Frigerio, S. Barbash, R. Rothman, A. S. R. Sierksma, A. Thathiah, D. Greenberg, et al. (2013)
EMBO Mol Med. 5, 1613-1634
   Abstract »    Full Text »    PDF »
De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer's disease.
H.-K. A. Wong, T. Veremeyko, N. Patel, C. A. Lemere, D. M. Walsh, C. Esau, C. Vanderburg, and A. M. Krichevsky (2013)
Hum. Mol. Genet. 22, 3077-3092
   Abstract »    Full Text »    PDF »
Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation.
T. Nakahama, H. Hanieh, N. T. Nguyen, I. Chinen, B. Ripley, D. Millrine, S. Lee, K. K. Nyati, P. K. Dubey, K. Chowdhury, et al. (2013)
PNAS 110, 11964-11969
   Abstract »    Full Text »    PDF »
Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction.
D. T. Balu, Y. Li, M. D. Puhl, M. A. Benneyworth, A. C. Basu, S. Takagi, V. Y. Bolshakov, and J. T. Coyle (2013)
PNAS 110, E2400-E2409
   Abstract »    Full Text »    PDF »
miR-200 and miR-96 families repress neural induction from human embryonic stem cells.
Z.-W. Du, L.-X. Ma, C. Phillips, and S.-C. Zhang (2013)
Development 140, 2611-2618
   Abstract »    Full Text »    PDF »
Early leptin blockade predisposes fat-fed rats to overweight and modifies hypothalamic microRNAs.
C. Benoit, H. Ould-Hamouda, D. Crepin, A. Gertler, L. Amar, and M. Taouis (2013)
J. Endocrinol. 218, 35-47
   Abstract »    Full Text »    PDF »
MicroRNA-144 Is Regulated by Activator Protein-1 (AP-1) and Decreases Expression of Alzheimer Disease-related A Disintegrin and Metalloprotease 10 (ADAM10).
C. Cheng, W. Li, Z. Zhang, S. Yoshimura, Q. Hao, C. Zhang, and Z. Wang (2013)
J. Biol. Chem. 288, 13748-13761
   Abstract »    Full Text »    PDF »
BEND6 is a nuclear antagonist of Notch signaling during self-renewal of neural stem cells.
Q. Dai, C. Andreu-Agullo, R. Insolera, L. C. Wong, S.-H. Shi, and E. C. Lai (2013)
Development 140, 1892-1902
   Abstract »    Full Text »    PDF »
The MicroRNA-17-92 Cluster Enhances Axonal Outgrowth in Embryonic Cortical Neurons.
Y. Zhang, Y. Ueno, X. S. Liu, B. Buller, X. Wang, M. Chopp, and Z. G. Zhang (2013)
J. Neurosci. 33, 6885-6894
   Abstract »    Full Text »    PDF »
Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes.
A. Jovicic, R. Roshan, N. Moisoi, S. Pradervand, R. Moser, B. Pillai, and R. Luthi-Carter (2013)
J. Neurosci. 33, 5127-5137
   Abstract »    Full Text »    PDF »
Regulation of TLR2-Mediated Tolerance and Cross-Tolerance through IRAK4 Modulation by miR-132 and miR-212.
M. A. Nahid, B. Yao, P. R. Dominguez-Gutierrez, L. Kesavalu, M. Satoh, and E. K. L. Chan (2013)
J. Immunol. 190, 1250-1263
   Abstract »    Full Text »    PDF »
Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.
X. A. Cambronne, R. Shen, P. L. Auer, and R. H. Goodman (2012)
PNAS 109, 20473-20478
   Abstract »    Full Text »    PDF »
Convergent repression of Foxp2 3'UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons.
Y. M. Clovis, W. Enard, F. Marinaro, W. B. Huttner, and D. De Pietri Tonelli (2012)
Development 139, 3332-3342
   Abstract »    Full Text »    PDF »
Consolidation and translation regulation.
S. Gal-Ben-Ari, J. W. Kenney, H. Ounalla-Saad, E. Taha, O. David, D. Levitan, I. Gildish, D. Panja, B. Pai, K. Wibrand, et al. (2012)
Learn. Mem. 19, 410-422
   Abstract »    Full Text »    PDF »
TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways.
A. S. Chen-Plotkin, T. L. Unger, M. D. Gallagher, E. Bill, L. K. Kwong, L. Volpicelli-Daley, J. I. Busch, S. Akle, M. Grossman, V. Van Deerlin, et al. (2012)
J. Neurosci. 32, 11213-11227
   Abstract »    Full Text »    PDF »
Regulation of dendritic branching by Cdc42 GAPs.
S. Simo and J. A. Cooper (2012)
Genes & Dev. 26, 1653-1658
   Abstract »    Full Text »    PDF »
miR-212/132 expression and functions: within and beyond the neuronal compartment.
A. Wanet, A. Tacheny, T. Arnould, and P. Renard (2012)
Nucleic Acids Res. 40, 4742-4753
   Abstract »    Full Text »    PDF »
Intestinal epithelial CD98 synthesis specifically modulates expression of colonic microRNAs during colitis.
M. A. Charania, S. Ayyadurai, S. A. Ingersoll, B. Xiao, E. Viennois, Y. Yan, H. Laroui, S. V. Sitaraman, and D. Merlin (2012)
Am J Physiol Gastrointest Liver Physiol 302, G1282-G1291
   Abstract »    Full Text »    PDF »
Small RNA Sequencing Reveals MicroRNAs That Modulate Angiotensin II Effects in Vascular Smooth Muscle Cells.
W. Jin, M. A. Reddy, Z. Chen, S. Putta, L. Lanting, M. Kato, J. T. Park, M. Chandra, C. Wang, R. K. Tangirala, et al. (2012)
J. Biol. Chem. 287, 15672-15683
   Abstract »    Full Text »    PDF »
TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes.
Y. Kawahara and A. Mieda-Sato (2012)
PNAS 109, 3347-3352
   Abstract »    Full Text »    PDF »
microRNA-34a regulates neurite outgrowth, spinal morphology, and function.
M. Agostini, P. Tucci, J. R. Steinert, R. Shalom-Feuerstein, M. Rouleau, D. Aberdam, I. D. Forsythe, K. W. Young, A. Ventura, C. P. Concepcion, et al. (2011)
PNAS 108, 21099-21104
   Abstract »    Full Text »    PDF »
cAMP Response Element-Binding Protein Is a Primary Hub of Activity-Driven Neuronal Gene Expression.
E. Benito, L. M. Valor, M. Jimenez-Minchan, W. Huber, and A. Barco (2011)
J. Neurosci. 31, 18237-18250
   Abstract »    Full Text »    PDF »
Emerging Role of Micro-RNAs in the Regulation of Angiogenesis.
S. Anand and D. A. Cheresh (2011)
Genes & Cancer 2, 1134-1138
   Abstract »    Full Text »    PDF »
Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology.
G. Lippi, J. R. Steinert, E. L. Marczylo, S. D'Oro, R. Fiore, I. D. Forsythe, G. Schratt, M. Zoli, P. Nicotera, and K. W. Young (2011)
J. Cell Biol. 194, 889-904
   Abstract »    Full Text »    PDF »
Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development.
S. Zhang, J. Hao, F. Xie, X. Hu, C. Liu, J. Tong, J. Zhou, J. Wu, and C. Shao (2011)
Carcinogenesis 32, 1183-1189
   Abstract »    Full Text »    PDF »
Interplay of Chemical Neurotransmitters Regulates Developmental Increase in Electrical Synapses.
W.-M. Park, Y. Wang, S. Park, J. V. Denisova, J. D. Fontes, and A. B. Belousov (2011)
J. Neurosci. 31, 5909-5920
   Abstract »    Full Text »    PDF »
MicroRNAs-10a and -10b Contribute to Retinoic Acid-induced Differentiation of Neuroblastoma Cells and Target the Alternative Splicing Regulatory Factor SFRS1 (SF2/ASF).
S. Meseguer, G. Mudduluru, J. M. Escamilla, H. Allgayer, and D. Barettino (2011)
J. Biol. Chem. 286, 4150-4164
   Abstract »    Full Text »    PDF »
microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus.
S. T. Magill, X. A. Cambronne, B. W. Luikart, D. T. Lioy, B. H. Leighton, G. L. Westbrook, G. Mandel, and R. H. Goodman (2010)
PNAS 107, 20382-20387
   Abstract »    Full Text »    PDF »
MicroRNA Regulation of Neural Stem Cells and Neurogenesis.
Y. Shi, X. Zhao, J. Hsieh, H. Wichterle, S. Impey, S. Banerjee, P. Neveu, and K. S. Kosik (2010)
J. Neurosci. 30, 14931-14936
   Abstract »    Full Text »    PDF »
Regulation of the Postsynaptic Cytoskeleton: Roles in Development, Plasticity, and Disorders.
T. Svitkina, W.-H. Lin, D. J. Webb, R. Yasuda, G. A. Wayman, L. Van Aelst, and S. H. Soderling (2010)
J. Neurosci. 30, 14937-14942
   Abstract »    Full Text »    PDF »
Early Life Stress Enhances Behavioral Vulnerability to Stress through the Activation of REST4-Mediated Gene Transcription in the Medial Prefrontal Cortex of Rodents.
S. Uchida, K. Hara, A. Kobayashi, H. Funato, T. Hobara, K. Otsuki, H. Yamagata, B. S. McEwen, and Y. Watanabe (2010)
J. Neurosci. 30, 15007-15018
   Abstract »    Full Text »    PDF »
A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation.
P. Laneve, U. Gioia, A. Andriotto, F. Moretti, I. Bozzoni, and E. Caffarelli (2010)
Nucleic Acids Res. 38, 6895-6905
   Abstract »    Full Text »    PDF »
MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways.
B. N. Davis-Dusenbery and A. Hata (2010)
Genes & Cancer 1, 1100-1114
   Abstract »    Full Text »    PDF »
Mechanisms of control of microRNA biogenesis.
B. N. Davis-Dusenbery and A. Hata (2010)
J. Biochem. 148, 381-392
   Abstract »    Full Text »    PDF »
Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds.
J. Zhao, M.-C. Lee, A. Momin, C.-M. Cendan, S. T. Shepherd, M. D. Baker, C. Asante, L. Bee, A. Bethry, J. R. Perkins, et al. (2010)
J. Neurosci. 30, 10860-10871
   Abstract »    Full Text »    PDF »
miRNA malfunction causes spinal motor neuron disease.
S. Haramati, E. Chapnik, Y. Sztainberg, R. Eilam, R. Zwang, N. Gershoni, E. McGlinn, P. W. Heiser, A.-M. Wills, I. Wirguin, et al. (2010)
PNAS 107, 13111-13116
   Abstract »    Full Text »    PDF »
Understanding neuronal connectivity through the post-transcriptional toolkit.
C. M. Loya, D. Van Vactor, and T. A. Fulga (2010)
Genes & Dev. 24, 625-635
   Abstract »    Full Text »    PDF »
The MicroRNA-Processing Enzyme Dicer Maintains Juxtaglomerular Cells.
M. L. S. Sequeira-Lopez, E. T. Weatherford, G. R. Borges, M. C. Monteagudo, E. S. Pentz, B. D. Harfe, O. Carretero, C. D. Sigmund, and R. A. Gomez (2010)
J. Am. Soc. Nephrol. 21, 460-467
   Abstract »    Full Text »    PDF »
Widespread Estrogen-Dependent Repression of microRNAs Involved in Breast Tumor Cell Growth.
G. Maillot, M. Lacroix-Triki, S. Pierredon, L. Gratadou, S. Schmidt, V. Benes, H. Roche, F. Dalenc, D. Auboeuf, S. Millevoi, et al. (2009)
Cancer Res. 69, 8332-8340
   Abstract »    Full Text »    PDF »
Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics.
M. S. Weinberg and M. J.A. Wood (2009)
Hum. Mol. Genet. 18, R27-R39
   Abstract »    Full Text »    PDF »
Small regulatory RNAs in neurodevelopmental disorders.
S. Chang, S. Wen, D. Chen, and P. Jin (2009)
Hum. Mol. Genet. 18, R18-R26
   Abstract »    Full Text »    PDF »
MicroRNA in the ovary and female reproductive tract.
M. Z. Carletti and L. K. Christenson (2009)
J Anim Sci 87, E29-E38
   Abstract »    Full Text »    PDF »
Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels.
R. Fiore, S. Khudayberdiev, M. Christensen, G. Siegel, S. W. Flavell, T.-K. Kim, M. E. Greenberg, and G. Schratt (2009)
EMBO J. 28, 697-710
   Abstract »    Full Text »    PDF »
Regulation of the Mammalian Nervous System by MicroRNAs.
Y. Zeng (2009)
Mol. Pharmacol. 75, 259-264
   Abstract »    Full Text »    PDF »
Regulation of neural macroRNAs by the transcriptional repressor REST.
R. Johnson, C. H.-L. Teh, H. Jia, R. R. Vanisri, T. Pandey, Z.-H. Lu, N. J. Buckley, L. W. Stanton, and L. Lipovich (2009)
RNA 15, 85-96
   Abstract »    Full Text »    PDF »
The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington's Disease.
A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson (2008)
J. Neurosci. 28, 14341-14346
   Abstract »    Full Text »    PDF »
Hormonal Regulation of MicroRNA Expression in Periovulatory Mouse Mural Granulosa Cells.
S. D. Fiedler, M. Z. Carletti, X. Hong, and L. K. Christenson (2008)
Biol Reprod 79, 1030-1037
   Abstract »    Full Text »    PDF »
Analysis of regulatory network topology reveals functionally distinct classes of microRNAs.
X. Yu, J. Lin, D. J. Zack, J. T. Mendell, and J. Qian (2008)
Nucleic Acids Res. 36, 6494-6503
   Abstract »    Full Text »    PDF »
MicroRNA-9 Modulates Cajal-Retzius Cell Differentiation by Suppressing Foxg1 Expression in Mouse Medial Pallium.
M. Shibata, D. Kurokawa, H. Nakao, T. Ohmura, and S. Aizawa (2008)
J. Neurosci. 28, 10415-10421
   Abstract »    Full Text »    PDF »
Noncoding RNAs in Long-Term Memory Formation.
T. R. Mercer, M. E. Dinger, J. Mariani, K. S. Kosik, M. F. Mehler, and J. S. Mattick (2008)
Neuroscientist 14, 434-445
   Abstract »    PDF »
A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex.
N. Mellios, H.-S. Huang, A. Grigorenko, E. Rogaev, and S. Akbarian (2008)
Hum. Mol. Genet. 17, 3030-3042
   Abstract »    Full Text »    PDF »
MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
F. Fazi and C. Nervi (2008)
Cardiovasc Res 79, 553-561
   Abstract »    Full Text »    PDF »
An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP.
G. A. Wayman, M. Davare, H. Ando, D. Fortin, O. Varlamova, H.-Y. M. Cheng, D. Marks, K. Obrietan, T. R. Soderling, R. H. Goodman, et al. (2008)
PNAS 105, 9093-9098
   Abstract »    Full Text »    PDF »
Conditional Loss of Dicer Disrupts Cellular and Tissue Morphogenesis in the Cortex and Hippocampus.
T. H. Davis, T. L. Cuellar, S. M. Koch, A. J. Barker, B. D. Harfe, M. T. McManus, and E. M. Ullian (2008)
J. Neurosci. 28, 4322-4330
   Abstract »    Full Text »    PDF »
The Protein Dendrite Arborization and Synapse Maturation 1 (Dasm-1) Is Dispensable for Dendrite Arborization.
A. Mishra, B. Knerr, S. Paixao, E. R. Kramer, and R. Klein (2008)
Mol. Cell. Biol. 28, 2782-2791
   Abstract »    Full Text »    PDF »
MicroRNA expression in the adult mouse central nervous system.
M. Bak, A. Silahtaroglu, M. Moller, M. Christensen, M. F. Rath, B. Skryabin, N. Tommerup, and S. Kauppinen (2008)
RNA 14, 432-444
   Abstract »    Full Text »    PDF »
The Dynamic Epigenome and its Implications in Toxicology.
M. Szyf (2007)
Toxicol. Sci. 100, 7-23
   Abstract »    Full Text »    PDF »
A simple array platform for microRNA analysis and its application in mouse tissues.
X. Tang, J. Gal, X. Zhuang, W. Wang, H. Zhu, and G. Tang (2007)
RNA 13, 1803-1822
   Abstract »    Full Text »    PDF »
Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines.
H. Wu, J. Xu, Z. P. Pang, W. Ge, K. J. Kim, B. Blanchi, C. Chen, T. C. Sudhof, and Y. E. Sun (2007)
PNAS 104, 13821-13826
   Abstract »    Full Text »    PDF »
Cerebellar neurodegeneration in the absence of microRNAs.
A. Schaefer, D. O'Carroll, C. L. Tan, D. Hillman, M. Sugimori, R. Llinas, and P. Greengard (2007)
J. Exp. Med. 204, 1553-1558
   Abstract »    Full Text »    PDF »
Peroxisome Proliferator-Activated Receptor {alpha} Regulates a MicroRNA-Mediated Signaling Cascade Responsible for Hepatocellular Proliferation.
Y. M. Shah, K. Morimura, Q. Yang, T. Tanabe, M. Takagi, and F. J. Gonzalez (2007)
Mol. Cell. Biol. 27, 4238-4247
   Abstract »    Full Text »    PDF »
The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells.
P. Laneve, L. Di Marcotullio, U. Gioia, M. E. Fiori, E. Ferretti, A. Gulino, I. Bozzoni, and E. Caffarelli (2007)
PNAS 104, 7957-7962
   Abstract »    Full Text »    PDF »
PSD-95 is required for activity-driven synapse stabilization.
I. Ehrlich, M. Klein, S. Rumpel, and R. Malinow (2007)
PNAS 104, 4176-4181
   Abstract »    Full Text »    PDF »
MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila.
Y. Li, F. Wang, J.-A Lee, and F.-B. Gao (2006)
Genes & Dev. 20, 2793-2805
   Abstract »    Full Text »    PDF »
Retraction of synapses and dendritic spines induced by off-target effects of RNA interference..
V. A. Alvarez, D. A. Ridenour, and B. L. Sabatini (2006)
J. Neurosci. 26, 7820-7825
   Abstract »    Full Text »    PDF »
START: an automated tool for serial analysis of chromatin occupancy data.
V. D. Marinescu, I. S. Kohane, T.-K. Kim, D. A. Harmin, M. E. Greenberg, and A. Riva (2006)
Bioinformatics 22, 999-1001
   Abstract »    Full Text »    PDF »
Reciprocal actions of REST and a microRNA promote neuronal identity.
C. Conaco, S. Otto, J.-J. Han, and G. Mandel (2006)
PNAS 103, 2422-2427
   Abstract »    Full Text »    PDF »
2005: Signaling Breakthroughs of the Year.
E. M. Adler, N. R. Gough, and L. B. Ray (2006)
Sci. STKE 2006, eg1
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882