Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 102 (50): 18011-18016

Copyright © 2005 by the National Academy of Sciences.


DEVELOPMENTAL BIOLOGY

Fat storage in adipocytes requires inactivation of leptin's paracrine activity: Implications for treatment of human obesity

May-yun Wang *, Lelio Orci {dagger}, Mariella Ravazzola {dagger}, and Roger H. Unger *, {ddagger}, §

*Gifford Laboratories, Touchstone Center for Diabetes Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8854; {ddagger}Veterans Affairs Medical Center, Dallas, TX 75216; and {dagger}Department of Cell Physiology and Metabolism, University Medical Center, CH-1211 Geneva 4, Switzerland

Contributed by Roger H. Unger, October 14, 2005

Abstract: Hyperleptinemia rapidly depletes adipocyte fat in lean rats, whereas comparable hyperleptinemia produced by adipocytes in diet-induced obesity does not, implying a leptinergic blockade in adipocytes during overnutrition. Indeed, activated STAT-3 in white adipose tissue (WAT) of normal rats was less on a 60% high fat diet (HFD) than on 4% fat, despite a 10-fold higher plasma leptin. In 6 days of a HFD, mRNA of the postreceptor leptin inhibitor, suppressor of cytokine signaling-3, increased 22-fold in WAT, while leptin receptor (Lepr-b) mRNA gradually disappeared, implying leptinergic blockade at both postreceptor and receptor levels. Adipocyte-specific Lepr-b overexpression of a Lepr-b transgene completely prevented the adipocyte hypertrophy and hyperplasia and the increase in body fat induced in wild-type mice by HFD. Activated STAT-3 and AMP-activated protein kinase (AMPK), and the mRNA of lipooxidative enzymes, peroxisome proliferator-activated receptor-{gamma}-coactivator-1{alpha}, and uncoupling protein-1 and -2 were increased in WAT. Body temperature was elevated in the transgenic mice, suggesting uncoupled fatty acid oxidation of surplus fatty acids. In conclusion, storage of surplus calories in WAT and the development of diet-induced obesity require the blockade of a latent leptin-stimulated caloric sump in white adipocytes.

Key Words: autocrine/paracrine action • diet-induced obesity • hyperleptinemia • lepr-b • AMP-activated protein kinase


Author contributions: M.-y.W. and R.H.U. designed research; M.-y.W. and L.O. performed research; L.O. and M.R. contributed new reagents/analytic tools; M.-y.W., L.O., M.R., and R.H.U. analyzed data; and M.-y.W., L.O., and R.H.U. wrote the paper.

Conflict of interest statement: No conflicts declared.

Abbreviations: AMPK, AMP-activated protein kinase; DIO, diet-induced obesity; HFD, high fat diet; SD, Sprague–Dawley; SOCS, suppressor of cytokine signaling; TBST, TBS containing 0.1% Tween; TG, triglyceride; UCP, uncoupling protein; WAT, white adipose tissue; ZDF, Zucker diabetic fatty.

§ To whom correspondence should be addressed. E-mail: roger.unger{at}utsouthwestern.edu.

© 2005 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential regulation of AMPK activation in leptin- and creatine-deficient mice.
M. Stockebrand, K. Sauter, A. Neu, D. Isbrandt, and C.-u. Choe (2013)
FASEB J 27, 4147-4156
   Abstract »    Full Text »    PDF »
Leptin Signaling in Adipose Tissue: Role in Lipid Accumulation and Weight Gain.
P. Singh, T. E. Peterson, F. H. Sert-Kuniyoshi, J. A. Glenn, D. E. Davison, A. Romero-Corral, S. Pusalavidyasagar, M. D. Jensen, and V. K. Somers (2012)
Circ. Res. 111, 599-603
   Abstract »    Full Text »    PDF »
Bitter Melon Seed Oil-Attenuated Body Fat Accumulation in Diet-Induced Obese Mice Is Associated with cAMP-Dependent Protein Kinase Activation and Cell Death in White Adipose Tissue.
P.-H. Chen, G.-C. Chen, M.-F. Yang, C.-H. Hsieh, S.-H. Chuang, H.-L. Yang, Y.-H. Kuo, J.-H. Chyuan, and P.-M. Chao (2012)
J. Nutr. 142, 1197-1204
   Abstract »    Full Text »    PDF »
Catestatin (Chromogranin A352-372) and Novel Effects on Mobilization of Fat from Adipose Tissue through Regulation of Adrenergic and Leptin Signaling.
G. K. Bandyopadhyay, C. U. Vu, S. Gentile, H. Lee, N. Biswas, N.-W. Chi, D. T. O'Connor, and S. K. Mahata (2012)
J. Biol. Chem. 287, 23141-23151
   Abstract »    Full Text »    PDF »
Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet.
M.-A. Lukaszewski, S. Mayeur, I. Fajardy, F. Delahaye, I. Dutriez-Casteloot, V. Montel, A. Dickes-Coopman, C. Laborie, J. Lesage, D. Vieau, et al. (2011)
Am J Physiol Endocrinol Metab 301, E548-E559
   Abstract »    Full Text »    PDF »
Take-over: multiple mechanisms of inter-adipocyte communication.
G. Muller (2011)
J Mol Cell Biol 3, 81-90
   Abstract »    Full Text »    PDF »
Glucagon Receptor Knockout Prevents Insulin-Deficient Type 1 Diabetes in Mice.
Y. Lee, M.-Y. Wang, X. Q. Du, M. J. Charron, and R. H. Unger (2011)
Diabetes 60, 391-397
   Abstract »    Full Text »    PDF »
An animal model of spontaneous metabolic syndrome: Nile grass rat.
K. Noda, M. I. Melhorn, S. Zandi, S. Frimmel, F. Tayyari, T. Hisatomi, L. Almulki, A. Pronczuk, K. C. Hayes, and A. Hafezi-Moghadam (2010)
FASEB J 24, 2443-2453
   Abstract »    Full Text »    PDF »
Development of high-fat-diet-induced obesity in female metallothionein-null mice.
M. Sato, T. Kawakami, M. Kondoh, M. Takiguchi, Y. Kadota, S. Himeno, and S. Suzuki (2010)
FASEB J 24, 2375-2384
   Abstract »    Full Text »    PDF »
Leptin therapy in insulin-deficient type I diabetes.
M.-y. Wang, L. Chen, G. O. Clark, Y. Lee, R. D. Stevens, O. R. Ilkayeva, B. R. Wenner, J. R. Bain, M. J. Charron, C. B. Newgard, et al. (2010)
PNAS 107, 4813-4819
   Abstract »    Full Text »    PDF »
Leveraging leptin for type I diabetes?.
D. Kraus, M. A. Herman, and B. B. Kahn (2010)
PNAS 107, 4793-4794
   Full Text »    PDF »
Recent advances in understanding leptin signaling and leptin resistance.
D. L. Morris and L. Rui (2009)
Am J Physiol Endocrinol Metab 297, E1247-E1259
   Abstract »    Full Text »    PDF »
AMPK in Health and Disease.
G. R. Steinberg and B. E. Kemp (2009)
Physiol Rev 89, 1025-1078
   Abstract »    Full Text »    PDF »
Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome.
G. Yang, L. Badeanlou, J. Bielawski, A. J. Roberts, Y. A. Hannun, and F. Samad (2009)
Am J Physiol Endocrinol Metab 297, E211-E224
   Abstract »    Full Text »    PDF »
Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.
M. P. Gaidhu, S. Fediuc, N. M. Anthony, M. So, M. Mirpourian, R. L. S. Perry, and R. B. Ceddia (2009)
J. Lipid Res. 50, 704-715
   Abstract »    Full Text »    PDF »
Adipocyte metabolism and obesity.
A. D. Attie and P. E. Scherer (2009)
J. Lipid Res. 50, S395-S399
   Abstract »    Full Text »    PDF »
Heat shock modulates adipokines expression in 3T3-L1 adipocytes.
U. Bernabucci, L. Basirico, P. Morera, N. Lacetera, B. Ronchi, and A. Nardone (2009)
J. Mol. Endocrinol. 42, 139-147
   Abstract »    Full Text »    PDF »
Noninvasive tracking of gene expression by reporter transgene imaging.
R. H. Unger (2008)
PNAS 105, 12641-12642
   Full Text »    PDF »
Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies.
J. D. Roth, B. L. Roland, R. L. Cole, J. L. Trevaskis, C. Weyer, J. E. Koda, C. M. Anderson, D. G. Parkes, and A. D. Baron (2008)
PNAS 105, 7257-7262
   Abstract »    Full Text »    PDF »
Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome.
M.-Y. Wang, P. Grayburn, S. Chen, M. Ravazzola, L. Orci, and R. H. Unger (2008)
PNAS 105, 6139-6144
   Abstract »    Full Text »    PDF »
Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass.
K. Kos, A. L. Harte, S. James, D. R. Snead, J. P. O'Hare, P. G. McTernan, and S. Kumar (2007)
Am J Physiol Endocrinol Metab 293, E1335-E1340
   Abstract »    Full Text »    PDF »
Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism.
K. B. Goralski, T. C. McCarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher, S. D. Parlee, S. Muruganandan, and C. J. Sinal (2007)
J. Biol. Chem. 282, 28175-28188
   Abstract »    Full Text »    PDF »
CD36-Facilitated Fatty Acid Uptake Inhibits Leptin Production and Signaling in Adipose Tissue.
T. Hajri, A. M. Hall, D. R. Jensen, T. A. Pietka, V. A. Drover, H. Tao, R. Eckel, and N. A. Abumrad (2007)
Diabetes 56, 1872-1880
   Abstract »    Full Text »    PDF »
Leptin Stimulates Fatty Acid Oxidation and Peroxisome Proliferator-Activated Receptor {alpha} Gene Expression in Mouse C2C12 Myoblasts by Changing the Subcellular Localization of the {alpha}2 Form of AMP-Activated Protein Kinase.
A. Suzuki, S. Okamoto, S. Lee, K. Saito, T. Shiuchi, and Y. Minokoshi (2007)
Mol. Cell. Biol. 27, 4317-4327
   Abstract »    Full Text »    PDF »
Combined Leptin Actions on Adipose Tissue and Hypothalamus Are Required to Deplete Adipocyte Fat in Lean Rats: IMPLICATIONS FOR OBESITY TREATMENT.
B.-H. Park, M.-Y. Wang, Y. Lee, X. Yu, M. Ravazzola, L. Orci, and R. H. Unger (2006)
J. Biol. Chem. 281, 40283-40291
   Abstract »    Full Text »    PDF »
Direct and indirect effects of leptin on preadipocyte proliferation and differentiation.
B. Wagoner, D. B. Hausman, and R. B. S. Harris (2006)
Am J Physiol Regulatory Integrative Comp Physiol 290, R1557-R1564
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882