Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 103 (14): 5379-5384

Copyright © 2006 by the National Academy of Sciences.


Mitochondria as signaling organelles in the vascular endothelium

Marisol Quintero*, Sergio L. Colombo*, Andrew Godfrey, and Salvador Moncada{dagger}

Wolfson Institute for Biomedical Research, University College London, Cruciform Building, Gower Street, London WC1E 6AE, United Kingdom

Contributed by Salvador Moncada, February 8, 2006

Abstract: Vascular endothelial cells are highly glycolytic and consume relatively low amounts of oxygen (O2) compared with other cells. We have confirmed that oxidative phosphorylation is not the main source of ATP generation in these cells. We also show that at a low O2 concentration (<1%) endogenous NO plays a key role in preventing the accumulation of the {alpha}-subunit of hypoxia-inducible factor 1. At higher O2 concentrations (1–3%) NO facilitates the production of mitochondrial reactive oxygen species. This production activates the AMP-activated protein kinase by a mechanism independent of nucleotide concentrations. Thus, the primary role of mitochondria in vascular endothelial cells may not be to generate ATP but, under the control of NO, to act as signaling organelles using either O2 or O2-derived species as signaling molecules. Diversion of O2 away from endothelial cell mitochondria by NO might also facilitate oxygenation of vascular smooth muscle cells.

Key Words: AMP-activated protein kinase • hypoxia-inducible factor 1{alpha} • hypoxia • nitric oxide

*M.Q. and S.L.C. contributed equally to this work.

Author contributions: M.Q., S.L.C., and S.M. designed research; M.Q. and S.L.C. performed research; A.G. contributed new reagents/analytic tools; M.Q., S.L.C., and A.G. analyzed data; and M.Q., S.L.C., and S.M. wrote the paper.

Conflict of interest statement: No conflicts declared.

{dagger}To whom correspondence should be addressed. E-mail: s.moncada{at}

© 2006 by The National Academy of Sciences of the USA

Mitochondria and Cardiovascular Aging.
D.-F. Dai, P. S. Rabinovitch, and Z. Ungvari (2012)
Circ. Res. 110, 1109-1124
   Abstract »    Full Text »    PDF »
Acute Exposure to Low Glucose Rapidly Induces Endothelial Dysfunction and Mitochondrial Oxidative Stress: Role for AMP Kinase.
J. Wang, A. Alexanian, R. Ying, T. J. Kizhakekuttu, K. Dharmashankar, J. Vasquez-Vivar, D. D. Gutterman, and M. E. Widlansky (2012)
Arterioscler Thromb Vasc Biol 32, 712-720
   Abstract »    Full Text »    PDF »
Hypoxic Pulmonary Vasoconstriction.
J. T. Sylvester, L. A. Shimoda, P. I. Aaronson, and J. P. T. Ward (2012)
Physiol Rev 92, 367-520
   Abstract »    Full Text »    PDF »
Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels.
H. E. Abaci, R. Truitt, S. Tan, and S. Gerecht (2011)
Am J Physiol Cell Physiol 301, C431-C440
   Abstract »    Full Text »    PDF »
Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation.
G. Parra-Bonilla, D. F. Alvarez, A.-B. Al-Mehdi, M. Alexeyev, and T. Stevens (2010)
Am J Physiol Lung Cell Mol Physiol 299, L513-L522
   Abstract »    Full Text »    PDF »
Endothelial mitochondria and heart disease.
S. M. Davidson (2010)
Cardiovasc Res 88, 58-66
   Abstract »    Full Text »    PDF »
Exercise-induced immunosuppression: roles of reactive oxygen species and 5'-AMP-activated protein kinase dephosphorylation within immune cells.
H. Moir, M. G. Hughes, S. Potter, C. Sims, L. R. Butcher, N. A. Davies, K. Verheggen, K. P. Jones, A. W. Thomas, and R. Webb (2010)
J Appl Physiol 108, 1284-1292
   Abstract »    Full Text »    PDF »
Nitric Oxide, Cytochrome C Oxidase, and the Cellular Response to Hypoxia.
C. T. Taylor and S. Moncada (2010)
Arterioscler Thromb Vasc Biol 30, 643-647
   Abstract »    Full Text »    PDF »
Activation and Signaling by the AMP-Activated Protein Kinase in Endothelial Cells.
B. Fisslthaler and I. Fleming (2009)
Circ. Res. 105, 114-127
   Abstract »    Full Text »    PDF »
Regulation of Oxygen Distribution in Tissues by Endothelial Nitric Oxide.
V. M. Victor, C. Nunez, P. D'Ocon, C. T. Taylor, J. V. Esplugues, and S. Moncada (2009)
Circ. Res. 104, 1178-1183
   Abstract »    Full Text »    PDF »
eNOS Activation by Physical Forces: From Short-Term Regulation of Contraction to Chronic Remodeling of Cardiovascular Tissues.
J.-L. Balligand, O. Feron, and C. Dessy (2009)
Physiol Rev 89, 481-534
   Abstract »    Full Text »    PDF »
MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries.
P. C.Y. Tang, L. Qin, J. Zielonka, J. Zhou, C. Matte-Martone, S. Bergaya, N. van Rooijen, W. D. Shlomchik, W. Min, W. C. Sessa, et al. (2008)
J. Exp. Med. 205, 3159-3171
   Abstract »    Full Text »    PDF »
Caffeine Enhances Endothelial Repair by an AMPK-Dependent Mechanism.
I. Spyridopoulos, S. Fichtlscherer, R. Popp, S. W. Toennes, B. Fisslthaler, T. Trepels, A. Zernecke, E. A. Liehn, C. Weber, A. M. Zeiher, et al. (2008)
Arterioscler Thromb Vasc Biol 28, 1967-1974
   Abstract »    Full Text »    PDF »
Identification of Nitric Oxide as an Endogenous Activator of the AMP-activated Protein Kinase in Vascular Endothelial Cells.
J. Zhang, Z. Xie, Y. Dong, S. Wang, C. Liu, and M.-H. Zou (2008)
J. Biol. Chem. 283, 27452-27461
   Abstract »    Full Text »    PDF »
G{alpha}12 is targeted to the mitochondria and affects mitochondrial morphology and motility.
A. V. Andreeva, M. A. Kutuzov, and T. A. Voyno-Yasenetskaya (2008)
FASEB J 22, 2821-2831
   Abstract »    Full Text »    PDF »
Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence.
M. Schleicher, B. R. Shepherd, Y. Suarez, C. Fernandez-Hernando, J. Yu, Y. Pan, L. M. Acevedo, G. S. Shadel, and W. C. Sessa (2008)
J. Cell Biol. 180, 101-112
   Abstract »    Full Text »    PDF »
Experimental Model of Lacunar Infarction in the Gyrencephalic Brain of the Miniature Pig: Neurological Assessment and Histological, Immunohistochemical, and Physiological Evaluation of Dynamic Corticospinal Tract Deformation.
Y. Tanaka, H. Imai, K. Konno, T. Miyagishima, C. Kubota, S. Puentes, T. Aoki, H. Hata, K. Takata, Y. Yoshimoto, et al. (2008)
Stroke 39, 205-212
   Abstract »    Full Text »    PDF »
Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells.
M. Dixit, E. Bess, B. Fisslthaler, F. V. Hartel, T. Noll, R. Busse, and I. Fleming (2008)
Cardiovasc Res 77, 160-168
   Abstract »    Full Text »    PDF »
Nitric Oxide and Mitochondrial Signaling: From Physiology to Pathophysiology.
J. D. Erusalimsky and S. Moncada (2007)
Arterioscler Thromb Vasc Biol 27, 2524-2531
   Abstract »    Full Text »    PDF »
G Protein-Coupled Receptor Ca2+-Linked Mitochondrial Reactive Oxygen Species Are Essential for Endothelial/Leukocyte Adherence.
B. J. Hawkins, L. A. Solt, I. Chowdhury, A. S. Kazi, M. R. Abid, W. C. Aird, M. J. May, J. K. Foskett, and M. Madesh (2007)
Mol. Cell. Biol. 27, 7582-7593
   Abstract »    Full Text »    PDF »
Mitochondrial signaling and fertilization.
J. Van Blerkom and P. Davis (2007)
Mol. Hum. Reprod. 13, 759-770
   Abstract »    Full Text »    PDF »
4-Hydroxy-2-Nonenal Increases Superoxide Anion Radical in Endothelial Cells via Stimulated GTP Cyclohydrolase Proteasomal Degradation.
J. Whitsett, M. J. Picklo Sr, and J. Vasquez-Vivar (2007)
Arterioscler Thromb Vasc Biol 27, 2340-2347
   Abstract »    Full Text »    PDF »
Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.
M. P. Merker, S. H. Audi, B. J. Lindemer, G. S. Krenz, and R. D. Bongard (2007)
Am J Physiol Lung Cell Mol Physiol 293, L809-L819
   Abstract »    Full Text »    PDF »
Agonist-modulated Regulation of AMP-activated Protein Kinase (AMPK) in Endothelial Cells: EVIDENCE FOR AN AMPK -> Rac1 -> Akt -> ENDOTHELIAL NITRIC-OXIDE SYNTHASE PATHWAY.
Y. C. Levine, G. K. Li, and T. Michel (2007)
J. Biol. Chem. 282, 20351-20364
   Abstract »    Full Text »    PDF »
Nitric oxide regulation of mitochondrial oxygen consumption II: molecular mechanism and tissue physiology.
C. E. Cooper and C. Giulivi (2007)
Am J Physiol Cell Physiol 292, C1993-C2003
   Abstract »    Full Text »    PDF »
Superoxide Flux in Endothelial Cells via the Chloride Channel-3 Mediates Intracellular Signaling.
B. J. Hawkins, M. Madesh, C. J. Kirkpatrick, and A. B. Fisher (2007)
Mol. Biol. Cell 18, 2002-2012
   Abstract »    Full Text »    PDF »
Mitochondrial nitric oxide in the signaling of cell integrated responses.
M. C. Carreras and J. J. Poderoso (2007)
Am J Physiol Cell Physiol 292, C1569-C1580
   Abstract »    Full Text »    PDF »
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells.
D. X. Zhang and D. D. Gutterman (2007)
Am J Physiol Heart Circ Physiol 292, H2023-H2031
   Abstract »    Full Text »    PDF »
Endothelial Mitochondria: Contributing to Vascular Function and Disease.
S. M. Davidson and M. R. Duchen (2007)
Circ. Res. 100, 1128-1141
   Abstract »    Full Text »    PDF »
Sensing intracellular oxygen using near-infrared phosphorescent probes and live-cell fluorescence imaging.
T. C. O'Riordan, K. Fitzgerald, G. V. Ponomarev, J. Mackrill, J. Hynes, C. Taylor, and D. B. Papkovsky (2007)
Am J Physiol Regulatory Integrative Comp Physiol 292, R1613-R1620
   Abstract »    Full Text »    PDF »
Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle.
M. E. Sandstrom, S.-J. Zhang, H. Westerblad, and A. Katz (2007)
J. Physiol. 579, 527-534
   Abstract »    Full Text »    PDF »
Fluid Shear Stress and NO Decrease the Activity of the Hydroxy-Methylglutaryl Coenzyme A Reductase in Endothelial Cells via the AMP-Activated Protein Kinase and FoxO1.
B. Fisslthaler, I. Fleming, B. Keseru, K. Walsh, and R. Busse (2007)
Circ. Res. 100, e12-e21
   Abstract »    Full Text »    PDF »
Cytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide.
M. Palacios-Callender, V. Hollis, N. Frakich, J. Mateo, and S. Moncada (2007)
J. Cell Sci. 120, 160-165
   Abstract »    Full Text »    PDF »
Rebuttal from dr. Ward..
J Appl Physiol 101, 998
   Full Text »    PDF »
Last Word: Point:Counterpoint authors respond to commentaries on "Hypoxic pulmonary vasoconstriction is/is not mediated by increased production of reactive oxygen species".
J. P. T. Ward (2006)
J Appl Physiol 101, 1004
   Full Text »    PDF »
Mitochondrial Arginase II Modulates Nitric-Oxide Synthesis through Nonfreely Exchangeable L-Arginine Pools in Human Endothelial Cells.
G. Topal, A. Brunet, L. Walch, J.-L. Boucher, and M. David-Dufilho (2006)
J. Pharmacol. Exp. Ther. 318, 1368-1374
   Abstract »    Full Text »    PDF »
Specificity in reactive oxidant signaling: think globally, act locally.
L. S. Terada (2006)
J. Cell Biol. 174, 615-623
   Abstract »    Full Text »    PDF »
Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle.
M. E. Sandstrom, S.-J. Zhang, J. Bruton, J. P. Silva, M. B. Reid, H. Westerblad, and A. Katz (2006)
J. Physiol. 575, 251-262
   Abstract »    Full Text »    PDF »
A new function for mitochondria.
N. LeBrasseur (2006)
J. Cell Biol. 173, 4a
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882