Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (2): 359-364

Copyright © 2006 by the National Academy of Sciences.

From The Cover


DEVELOPMENTAL BIOLOGY

A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis

Norihito Kanamori *, {dagger}, Lene Heegaard Madsen *, Simona Radutoiu *, Mirela Frantescu *, Esben M. H. Quistgaard *, Hiroki Miwa {ddagger}, J. Allan Downie {ddagger}, Euan K. James §, Hubert H. Felle ¶, Line Lindegaard Haaning *, Torben Heick Jensen *, Shusei Sato ||, Yasukazu Nakamura ||, Satoshi Tabata ||, Niels Sandal *, and Jens Stougaard *, **

*Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10 and C.F. Møllers Vej Bldg 130, 8000 Aarhus C, Denmark; {dagger}National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan; {ddagger}John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom; §Center for High Resolution Imaging and Processing, Medical Sciences Institute/Wellcome Trust Biocentre Complex, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Botanisches Institut I, Justus-Liebig Universität, D-35390 Giessen, Germany; and ||Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan

Edited by Sharon R. Long, Stanford University, Stanford, CA

Accepted for publication November 14, 2005.

Received for publication October 11, 2005.

Abstract: Nuclear-cytoplasmic partitioning and traffic between cytoplasmic and nuclear compartments are fundamental processes in eukaryotic cells. Nuclear pore complexes mediate transport of proteins, RNAs and ribonucleoprotein particles in and out of the nucleus. Here we present positional cloning of a plant nucleoporin gene, Nup133, essential for a symbiotic signal transduction pathway shared by Rhizobium bacteria and mycorrhizal fungi. Mutation of Nup133 results in a temperature sensitive nodulation deficient phenotype and absence of mycorrhizal colonization. Root nodules developing with reduced frequency at permissive temperatures are ineffective and electron microscopy show that Rhizobium bacteria are not released from infection threads. Measurement of ion fluxes using a calcium-sensitive dye show that Nup133 is required for the Ca2+ spiking normally detectable within minutes after application of purified rhizobial Nod-factor signal molecules to root hairs. Localization of NUP133 in the nuclear envelope of root cells and root hair cells shown with enhanced yellow fluorescent protein fusion proteins suggests a novel role for NUP133 nucleoporins in a rapid nuclear–cytoplasmic communication after host–plant recognition of symbiotic microbes. Our results identify a component of an intriguing signal process requiring interaction at the cell plasma membrane and at intracellular nuclear and plastid organelle-membranes to induce a second messenger.

Key Words: legume symbiosis • nucleoporin • nuclear pore • plant–microbe interaction


Author contributions: T.H.J., S.T., and J.S. designed research; N.K., L.H.M., S.R., M.F., H.M., E.K.J., H.H.F., L.L.H., S.S., Y.N., and N.S. performed research; N.K., L.H.M., S.R., M.F., E.M.H.Q., H.M., J.A.D., E.K.J., H.H.F., L.L.H., S.S., N.S., and J.S. analyzed data; and J.S. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: eYFP, enhanced yellow fluorescent protein.

Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AJ890251 [GenBank] , AJ890252 [GenBank] , and AP008949–AP008952).

** To whom correspondence should be addressed. E-mail: stougaard{at}mb.au.dk.

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.
C. Rogers and G. E. D. Oldroyd (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in Arbuscular Mycorrhizal Formation.
T. Kojima, K. Saito, H. Oba, Y. Yoshida, J. Terasawa, Y. Umehara, N. Suganuma, M. Kawaguchi, and R. Ohtomo (2014)
Plant Cell Physiol.
   Abstract »    Full Text »    PDF »
CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular Mycorrhiza Development.
N. Takeda, S. Tsuzuki, T. Suzaki, M. Parniske, and M. Kawaguchi (2013)
Plant Cell Physiol. 54, 1711-1723
   Abstract »    Full Text »    PDF »
Nuclear Calcium Signaling in Plants.
M. Charpentier and G. E. D. Oldroyd (2013)
Plant Physiology 163, 496-503
   Full Text »    PDF »
The molecular architecture of the plant nuclear pore complex.
K. Tamura and I. Hara-Nishimura (2013)
J. Exp. Bot. 64, 823-832
   Abstract »    Full Text »    PDF »
Assessing the function of the plant nuclear pore complex and the search for specificity.
G. Parry (2013)
J. Exp. Bot. 64, 833-845
   Abstract »    Full Text »    PDF »
Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling.
N. J. Roberts, G. Morieri, G. Kalsi, A. Rose, J. Stiller, A. Edwards, F. Xie, P. M. Gresshoff, G. E. D. Oldroyd, J. A. Downie, et al. (2013)
Plant Physiology 161, 556-567
   Abstract »    Full Text »    PDF »
Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations.
E. Granqvist, D. Wysham, S. Hazledine, W. Kozlowski, J. Sun, M. Charpentier, T. V. Martins, P. Haleux, K. Tsaneva-Atanasova, J. A. Downie, et al. (2012)
Plant Physiology 160, 2300-2310
   Abstract »    Full Text »    PDF »
Medicago truncatula ERN Transcription Factors: Regulatory Interplay with NSP1/NSP2 GRAS Factors and Expression Dynamics throughout Rhizobial Infection.
M. R. Cerri, L. Frances, T. Laloum, M.-C. Auriac, A. Niebel, G. E. D. Oldroyd, D. G. Barker, J. Fournier, and F. de Carvalho-Niebel (2012)
Plant Physiology 160, 2155-2172
   Abstract »    Full Text »    PDF »
LONO1 Encoding a Nucleoporin Is Required for Embryogenesis and Seed Viability in Arabidopsis.
C. Braud, W. Zheng, and W. Xiao (2012)
Plant Physiology 160, 823-836
   Abstract »    Full Text »    PDF »
A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation.
C. I. Pislariu, J. D. Murray, J. Wen, V. Cosson, R. R. D. Muni, M. Wang, V. A. Benedito, A. Andriankaja, X. Cheng, I. T. Jerez, et al. (2012)
Plant Physiology 159, 1686-1699
   Abstract »    Full Text »    PDF »
WUSCHEL-RELATED HOMEOBOX5 Gene Expression and Interaction of CLE Peptides with Components of the Systemic Control Add Two Pieces to the Puzzle of Autoregulation of Nodulation.
M. A. Osipova, V. Mortier, K. N. Demchenko, V. E. Tsyganov, I. A. Tikhonovich, L. A. Lutova, E. A. Dolgikh, and S. Goormachtig (2012)
Plant Physiology 158, 1329-1341
   Abstract »    Full Text »    PDF »
Nuclear-Localized and Deregulated Calcium- and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in Lotus japonicus.
N. Takeda, T. Maekawa, and M. Hayashi (2012)
PLANT CELL 24, 810-822
   Abstract »    Full Text »    PDF »
Rhizobial and Fungal Symbioses Show Different Requirements for Calmodulin Binding to Calcium Calmodulin-Dependent Protein Kinase in Lotus japonicus.
Y. Shimoda, L. Han, T. Yamazaki, R. Suzuki, M. Hayashi, and H. Imaizumi-Anraku (2012)
PLANT CELL 24, 304-321
   Abstract »    Full Text »    PDF »
Dynamics of the Plant Nuclear Envelope and Nuclear Pore.
J. Boruc, X. Zhou, and I. Meier (2012)
Plant Physiology 158, 78-86
   Full Text »    PDF »
Nuclear membranes control symbiotic calcium signaling of legumes.
W. Capoen, J. Sun, D. Wysham, M. S. Otegui, M. Venkateshwaran, S. Hirsch, H. Miwa, J. A. Downie, R. J. Morris, J.-M. Ane, et al. (2011)
PNAS 108, 14348-14353
   Abstract »    Full Text »    PDF »
A Novel Interaction between CCaMK and a Protein Containing the Scythe_N Ubiquitin-Like Domain in Lotus japonicus.
H. Kang, H. Zhu, X. Chu, Z. Yang, S. Yuan, D. Yu, C. Wang, Z. Hong, and Z. Zhang (2011)
Plant Physiology 155, 1312-1324
   Abstract »    Full Text »    PDF »
Identification and Characterization of Nuclear Pore Complex Components in Arabidopsis thaliana.
K. Tamura, Y. Fukao, M. Iwamoto, T. Haraguchi, and I. Hara-Nishimura (2010)
PLANT CELL 22, 4084-4097
   Abstract »    Full Text »    PDF »
plenty, a Novel Hypernodulation Mutant in Lotus japonicus.
C. Yoshida, S. Funayama-Noguchi, and M. Kawaguchi (2010)
Plant Cell Physiol. 51, 1425-1435
   Abstract »    Full Text »    PDF »
How Many Peas in a Pod? Legume Genes Responsible for Mutualistic Symbioses Underground.
H. Kouchi, H. Imaizumi-Anraku, M. Hayashi, T. Hakoyama, T. Nakagawa, Y. Umehara, N. Suganuma, and M. Kawaguchi (2010)
Plant Cell Physiol. 51, 1381-1397
   Abstract »    Full Text »    PDF »
Function of GRAS Proteins in Root Nodule Symbiosis is Retained in Homologs of a Non-Legume, Rice.
K. Yokota, T. Soyano, H. Kouchi, and M. Hayashi (2010)
Plant Cell Physiol. 51, 1436-1442
   Abstract »    Full Text »    PDF »
Ion Channels at the Nucleus: Electrophysiology Meets the Genome.
A. J. M. Matzke, T. M. Weiger, and M. Matzke (2010)
Mol Plant 3, 642-652
   Abstract »    Full Text »    PDF »
NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development.
M. Groth, N. Takeda, J. Perry, H. Uchida, S. Draxl, A. Brachmann, S. Sato, S. Tabata, M. Kawaguchi, T. L. Wang, et al. (2010)
PLANT CELL 22, 2509-2526
   Abstract »    Full Text »    PDF »
Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis.
Q. Zhang, L. A. Blaylock, and M. J. Harrison (2010)
PLANT CELL 22, 1483-1497
   Abstract »    Full Text »    PDF »
Large-Scale Phosphoprotein Analysis in Medicago truncatula Roots Provides Insight into in Vivo Kinase Activity in Legumes.
P. A. Grimsrud, D. den Os, C. D. Wenger, D. L. Swaney, D. Schwartz, M. R. Sussman, J.-M. Ane, and J. J. Coon (2010)
Plant Physiology 152, 19-28
   Abstract »    Full Text »    PDF »
A Nuclear-Targeted Cameleon Demonstrates Intranuclear Ca2+ Spiking in Medicago truncatula Root Hairs in Response to Rhizobial Nodulation Factors.
B. J. Sieberer, M. Chabaud, A. C. Timmers, A. Monin, J. Fournier, and D. G. Barker (2009)
Plant Physiology 151, 1197-1206
   Abstract »    Full Text »    PDF »
Calcium Spiking Patterns and the Role of the Calcium/Calmodulin-Dependent Kinase CCaMK in Lateral Root Base Nodulation of Sesbania rostrata.
W. Capoen, J. Den Herder, J. Sun, C. Verplancke, A. De Keyser, R. De Rycke, S. Goormachtig, G. Oldroyd, and M. Holsters (2009)
PLANT CELL 21, 1526-1540
   Abstract »    Full Text »    PDF »
The Temperature-Sensitive brush Mutant of the Legume Lotus japonicus Reveals a Link between Root Development and Nodule Infection by Rhizobia.
M. Maekawa-Yoshikawa, J. Muller, N. Takeda, T. Maekawa, S. Sato, S. Tabata, J. Perry, T. L. Wang, M. Groth, A. Brachmann, et al. (2009)
Plant Physiology 149, 1785-1796
   Abstract »    Full Text »    PDF »
GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula.
S. Hirsch, J. Kim, A. Munoz, A. B. Heckmann, J. A. Downie, and G. E.D. Oldroyd (2009)
PLANT CELL 21, 545-557
   Abstract »    Full Text »    PDF »
Rearrangement of Actin Cytoskeleton Mediates Invasion of Lotus japonicus Roots by Mesorhizobium loti.
K. Yokota, E. Fukai, L. H. Madsen, A. Jurkiewicz, P. Rueda, S. Radutoiu, M. Held, M. S. Hossain, K. Szczyglowski, G. Morieri, et al. (2009)
PLANT CELL 21, 267-284
   Abstract »    Full Text »    PDF »
Antiquity and Function of CASTOR and POLLUX, the Twin Ion Channel-Encoding Genes Key to the Evolution of Root Symbioses in Plants.
C. Chen, C. Fan, M. Gao, and H. Zhu (2009)
Plant Physiology 149, 306-317
   Abstract »    Full Text »    PDF »
CYCLOPS, a mediator of symbiotic intracellular accommodation.
K. Yano, S. Yoshida, J. Muller, S. Singh, M. Banba, K. Vickers, K. Markmann, C. White, B. Schuller, S. Sato, et al. (2008)
PNAS 105, 20540-20545
   Abstract »    Full Text »    PDF »
Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway.
M. Banba, C. Gutjahr, A. Miyao, H. Hirochika, U. Paszkowski, H. Kouchi, and H. Imaizumi-Anraku (2008)
Plant Cell Physiol. 49, 1659-1671
   Abstract »    Full Text »    PDF »
Arbuscular Mycorrhiza-Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway.
C. Gutjahr, M. Banba, V. Croset, K. An, A. Miyao, G. An, H. Hirochika, H. Imaizumi-Anraku, and U. Paszkowski (2008)
PLANT CELL 20, 2989-3005
   Abstract »    Full Text »    PDF »
Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in Medicago truncatula.
Y. Ding, P. Kalo, C. Yendrek, J. Sun, Y. Liang, J. F. Marsh, J. M. Harris, and G. E.D. Oldroyd (2008)
PLANT CELL 20, 2681-2695
   Abstract »    Full Text »    PDF »
Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes.
S. Kosuta, S. Hazledine, J. Sun, H. Miwa, R. J. Morris, J. A. Downie, and G. E. D. Oldroyd (2008)
PNAS 105, 9823-9828
   Abstract »    Full Text »    PDF »
AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel cis-Regulatory Motif.
A. Andriankaja, A. Boisson-Dernier, L. Frances, L. Sauviac, A. Jauneau, D. G. Barker, and F. de Carvalho-Niebel (2007)
PLANT CELL 19, 2866-2885
   Abstract »    Full Text »    PDF »
NUCLEAR PORE ANCHOR, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, Is Involved in mRNA Export and SUMO Homeostasis and Affects Diverse Aspects of Plant Development.
X. M. Xu, A. Rose, S. Muthuswamy, S. Y. Jeong, S. Venkatakrishnan, Q. Zhao, and I. Meier (2007)
PLANT CELL 19, 1537-1548
   Abstract »    Full Text »    PDF »
Medicago truncatula NIN Is Essential for Rhizobial-Independent Nodule Organogenesis Induced by Autoactive Calcium/Calmodulin-Dependent Protein Kinase.
J. F. Marsh, A. Rakocevic, R. M. Mitra, L. Brocard, J. Sun, A. Eschstruth, S. R. Long, M. Schultze, P. Ratet, and G. E.D. Oldroyd (2007)
Plant Physiology 144, 324-335
   Abstract »    Full Text »    PDF »
An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction.
P. H. Middleton, J. Jakab, R. V. Penmetsa, C. G. Starker, J. Doll, P. Kalo, R. Prabhu, J. F. Marsh, R. M. Mitra, A. Kereszt, et al. (2007)
PLANT CELL 19, 1221-1234
   Abstract »    Full Text »    PDF »
NUCLEOPORIN85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus.
K. Saito, M. Yoshikawa, K. Yano, H. Miwa, H. Uchida, E. Asamizu, S. Sato, S. Tabata, H. Imaizumi-Anraku, Y. Umehara, et al. (2007)
PLANT CELL 19, 610-624
   Abstract »    Full Text »    PDF »
A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis.
J. D. Murray, B. J. Karas, S. Sato, S. Tabata, L. Amyot, and K. Szczyglowski (2007)
Science 315, 101-104
   Abstract »    Full Text »    PDF »
Composition of the plant nuclear envelope: theme and variations.
I. Meier (2007)
J. Exp. Bot. 58, 27-34
   Abstract »    Full Text »    PDF »
Lotus japonicus Nodulation Requires Two GRAS Domain Regulators, One of Which Is Functionally Conserved in a Non-Legume.
A. B. Heckmann, F. Lombardo, H. Miwa, J. A. Perry, S. Bunnewell, M. Parniske, T. L. Wang, and J. A. Downie (2006)
Plant Physiology 142, 1739-1750
   Abstract »    Full Text »    PDF »
Positional Cloning Identifies Lotus japonicus NSP2, A Putative Transcription Factor of the GRAS Family, Required for NIN and ENOD40 Gene Expression in Nodule Initiation.
Y. Murakami, H. Miwa, H. Imaizumi-Anraku, H. Kouchi, J. A. Downie, M. Kawaguchi, and S. Kawasaki (2006)
DNA Res 13, 255-265
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882