Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (24): 9333-9338

Copyright © 2006 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / NEUROSCIENCE

Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter

Rong Chen*, Michael R. Tilley*, Hua Wei*, Fuwen Zhou{dagger}, Fu-Ming Zhou{dagger}, San Ching{ddagger}, Ning Quan{ddagger}, Robert L. Stephens§, Erik R. Hill*, Timothy Nottoli, Dawn D. Han*, and Howard H. Gu*,||,**

Departments of *Pharmacology, ||Psychiatry, {ddagger}Oral Biology, and §Physiology, Ohio State University, 5184b Graves Hall, 333 West 10th Avenue, Columbus, OH 43210; {dagger}Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163; and Section of Comparative Medicine, Yale University, 375 Congress Avenue, New Haven, CT 06520

Edited by Susan G. Amara, University of Pittsburgh School of Medicine, Pittsburgh, PA, and approved May 2, 2006

Received for publication February 2, 2006.

Abstract: There are three known high-affinity targets for cocaine: the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Decades of studies support the dopamine (DA) hypothesis that the blockade of DAT and the subsequent increase in extracellular DA primarily mediate cocaine reward and reinforcement. Contrary to expectations, DAT knockout (DAT-KO) mice and SERT or NET knockout mice still self-administer cocaine and/or display conditioned place preference (CPP) to cocaine, which led to the reevaluation of the DA hypothesis and the proposal of redundant reward pathways. To study the role of DAT in cocaine reward, we have generated a knockin mouse line carrying a functional DAT that is insensitive to cocaine. In these mice, cocaine suppressed locomotor activity, did not elevate extracellular DA in the nucleus accumbens, and did not produce reward as measured by CPP. This result suggests that blockade of DAT is necessary for cocaine reward in mice with a functional DAT. This mouse model is unique in that it is specifically designed to differentiate the role of DAT from the roles of NET and SERT in cocaine-induced biochemical and behavioral effects.

Key Words: addiction • amphetamine • conditioned place preference • knockin


Author contributions: H.H.G., R.C., and M.R.T. designed research; H.H.G., R.C., M.R.T., H.W., F.Z., F.-M.Z., S.C., N.Q., E.R.H., T.N., and D.D.H. performed research; F.-M.Z. and R.L.S. contributed new reagents/analytic tools; H.H.G., R.C., and M.R.T. analyzed data; and H.H.G., R.C., and M.R.T. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

**To whom correspondence should be addressed. E-mail: gu.37{at}osu.edu

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Binding of Mazindol and Analogs to the Human Serotonin and Dopamine Transporters.
K. Severinsen, H. Koldso, K. A. V. Thorup, C. Schjoth-Eskesen, P. T. Moller, O. Wiborg, H. H. Jensen, S. Sinning, and B. Schiott (2014)
Mol. Pharmacol. 85, 208-217
   Abstract »    Full Text »    PDF »
Drug-Evoked Synaptic Plasticity Causing Addictive Behavior.
C. Luscher (2013)
J. Neurosci. 33, 17641-17646
   Full Text »    PDF »
Cocaine Disinhibits Dopamine Neurons by Potentiation of GABA Transmission in the Ventral Tegmental Area.
C. Bocklisch, V. Pascoli, J. C. Y. Wong, D. R. C. House, C. Yvon, M. de Roo, K. R. Tan, and C. Luscher (2013)
Science 341, 1521-1525
   Abstract »    Full Text »    PDF »
Novel C-1 Substituted Cocaine Analogs Unlike Cocaine or Benztropine.
M. E. A. Reith, S. Ali, A. Hashim, I. S. Sheikh, N. Theddu, N. V. Gaddiraju, S. Mehrotra, K. C. Schmitt, T. F. Murray, H. Sershen, et al. (2012)
J. Pharmacol. Exp. Ther. 343, 413-425
   Abstract »    Full Text »    PDF »
The Plasma Membrane-Associated GTPase Rin Interacts with the Dopamine Transporter and Is Required for Protein Kinase C-Regulated Dopamine Transporter Trafficking.
D. M. Navaroli, Z. H. Stevens, Z. Uzelac, L. Gabriel, M. J. King, L. M. Lifshitz, H. H. Sitte, and H. E. Melikian (2011)
J. Neurosci. 31, 13758-13770
   Abstract »    Full Text »    PDF »
SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation.
A. S. Kristensen, J. Andersen, T. N. Jorgensen, L. Sorensen, J. Eriksen, C. J. Loland, K. Stromgaard, and U. Gether (2011)
Pharmacol. Rev. 63, 585-640
   Abstract »    Full Text »    PDF »
Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter.
B. J. Thompson, T. Jessen, L. K. Henry, J. R. Field, K. L. Gamble, P. J. Gresch, A. M. Carneiro, R. E. Horton, P. J. Chisnell, Y. Belova, et al. (2011)
PNAS 108, 3785-3790
   Abstract »    Full Text »    PDF »
Direct involvement of {sigma}-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.
G. Navarro, E. Moreno, M. Aymerich, D. Marcellino, P. J. McCormick, J. Mallol, A. Cortes, V. Casado, E. I. Canela, J. Ortiz, et al. (2010)
PNAS 107, 18676-18681
   Abstract »    Full Text »    PDF »
Role of Aberrant Striatal Dopamine D1 Receptor/cAMP/Protein Kinase A/DARPP32 Signaling in the Paradoxical Calming Effect of Amphetamine.
F. Napolitano, A. Bonito-Oliva, M. Federici, M. Carta, F. Errico, S. Magara, G. Martella, R. Nistico, D. Centonze, A. Pisani, et al. (2010)
J. Neurosci. 30, 11043-11056
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Amphetamine Actions in Caenorhabditis elegans.
L. Carvelli, D. S. Matthies, and A. Galli (2010)
Mol. Pharmacol. 78, 151-156
   Abstract »    Full Text »    PDF »
Low or High Cocaine Responding Rats Differ in Striatal Extracellular Dopamine Levels and Dopamine Transporter Number.
A. M. Nelson, G. A. Larson, and N. R. Zahniser (2009)
J. Pharmacol. Exp. Ther. 331, 985-997
   Abstract »    Full Text »    PDF »
Lack of Cocaine Self-Administration in Mice Expressing a Cocaine-Insensitive Dopamine Transporter.
M. Thomsen, D. D. Han, H. H. Gu, and S. B. Caine (2009)
J. Pharmacol. Exp. Ther. 331, 204-211
   Abstract »    Full Text »    PDF »
Cyclin-Dependent Kinase 5 Inhibitors: Inhibition of Dopamine Transporter Activity.
D. A. Price, A. Sorkin, and N. R. Zahniser (2009)
Mol. Pharmacol. 76, 812-823
   Abstract »    Full Text »    PDF »
Protracted Withdrawal from Alcohol and Drugs of Abuse Impairs Long-Term Potentiation of Intrinsic Excitability in the Juxtacapsular Bed Nucleus of the Stria Terminalis.
W. Francesconi, F. Berton, V. Repunte-Canonigo, K. Hagihara, D. Thurbon, D. Lekic, S. E. Specio, T. N. Greenwell, S. A. Chen, K. C. Rice, et al. (2009)
J. Neurosci. 29, 5389-5401
   Abstract »    Full Text »    PDF »
The Effects of Methylphenidate on Knockin Mice with a Methylphenidate-Resistant Dopamine Transporter.
M. R. Tilley and H. H. Gu (2008)
J. Pharmacol. Exp. Ther. 327, 554-560
   Abstract »    Full Text »    PDF »
Syntaxin 1A Interaction with the Dopamine Transporter Promotes Amphetamine-Induced Dopamine Efflux.
F. Binda, C. Dipace, E. Bowton, S. D. Robertson, B. J. Lute, J. U. Fog, M. Zhang, N. Sen, R. J. Colbran, M. E. Gnegy, et al. (2008)
Mol. Pharmacol. 74, 1101-1108
   Abstract »    Full Text »    PDF »
In Vivo Characterization of a Novel Phenylisothiocyanate Tropane Analog at Monoamine Transporters in Rat Brain.
V. Murthy, T. J. Martin, S. Kim, H. M. L. Davies, and S. R. Childers (2008)
J. Pharmacol. Exp. Ther. 326, 587-595
   Abstract »    Full Text »    PDF »
Distinctions between Dopamine Transporter Antagonists Could be Just around the Bend.
L. K. Henry and R. D. Blakely (2008)
Mol. Pharmacol. 73, 616-618
   Abstract »    Full Text »    PDF »
Relationship between Conformational Changes in the Dopamine Transporter and Cocaine-Like Subjective Effects of Uptake Inhibitors.
C. J. Loland, R. I. Desai, M.-F. Zou, J. Cao, P. Grundt, K. Gerstbrein, H. H. Sitte, A. H. Newman, J. L. Katz, and U. Gether (2008)
Mol. Pharmacol. 73, 813-823
   Abstract »    Full Text »    PDF »
Currents in Response to Rapid Concentration Jumps of Amphetamine Uncover Novel Aspects of Human Dopamine Transporter Function.
K. Erreger, C. Grewer, J. A. Javitch, and A. Galli (2008)
J. Neurosci. 28, 976-989
   Abstract »    Full Text »    PDF »
Cocaine-Conditioned Place Preference by Dopamine-Deficient Mice Is Mediated by Serotonin.
T. S. Hnasko, B. N. Sotak, and R. D. Palmiter (2007)
J. Neurosci. 27, 12484-12488
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882