Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (25): 9732-9737

Copyright © 2006 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / PLANT BIOLOGY

A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation

Lubomir N. Sokolov, Jose R. Dominguez-Solis, Anne-Laure Allary*, Bob B. Buchanan{dagger}, and Sheng Luan{dagger}

Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720

Contributed by Bob B. Buchanan, April 24, 2006

Abstract: Starch is the ultimate storage molecule formed in the photosynthetic fixation of carbon dioxide by chloroplasts. Starch accumulates during the day and is degraded at night to intermediates that are exported to heterotrophic organs. The mechanism by which diurnal cycles control the transitory biosynthesis and degradation of chloroplast starch has long remained a mystery. We now report evidence that a dual-specificity protein phosphatase, DSP4, binds to starch granules during the day and dissociates at night. Disruption of the DSP4 gene resulted in a dramatic increase in the level of starch in mutant Arabidopsis plants. Moreover, although composition was apparently unchanged, the morphology of the starch granule was significantly altered compared to the wild type counterpart. Two regulatory factors linked to light (i.e., pH and redox status) changed both the activity and the starch-binding capacity of DSP4. The results further revealed that DSP4 represents a major fraction of granule-bound phosphatase activity during the day but not at night. Our study suggests that DSP4 acts as a bridge between light-induced redox changes and protein phosphorylation in the regulation of starch accumulation.

Key Words: redox regulation • starch metabolism • starch-binding phosphatase


*Present address: University of Virginia School of Medicine, Charlottesville, VA 22908.

Author contributions: L.N.S., J.R.D.-S., B.B.B., and S.L. designed research; L.N.S., J.R.D.-S., and A.-L.A. performed research; L.N.S., B.B.B., and S.L. analyzed data; and L.N.S., B.B.B., and S.L. wrote the paper.

Conflict of interest statement: No conflicts declared.

{dagger}To whom correspondence may be addressed. E-mail: view{at}nature.berkeley.edu or sluan{at}nature.berkeley.edu

© 2006 by The National Academy of Sciences of the USA

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Arabidopsis thaliana AMY3 Is a Unique Redox-regulated Chloroplastic {alpha}-Amylase.
D. Seung, M. Thalmann, F. Sparla, M. Abou Hachem, S. K. Lee, E. Issakidis-Bourguet, B. Svensson, S. C. Zeeman, and D. Santelia (2013)
J. Biol. Chem. 288, 33620-33633
   Abstract »    Full Text »    PDF »
Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods.
A. Lepisto, E. Pakula, J. Toivola, A. Krieger-Liszkay, F. Vignols, and E. Rintamaki (2013)
J. Exp. Bot. 64, 3843-3854
   Abstract »    Full Text »    PDF »
Structure of the Arabidopsis Glucan Phosphatase LIKE SEX FOUR2 Reveals a Unique Mechanism for Starch Dephosphorylation.
D. A. Meekins, H.-F. Guo, S. Husodo, B. C. Paasch, T. M. Bridges, D. Santelia, O. Kotting, C. W. Vander Kooi, and M. S. Gentry (2013)
PLANT CELL 25, 2302-2314
   Abstract »    Full Text »    PDF »
Autophagy Contributes to Leaf Starch Degradation.
Y. Wang, B. Yu, J. Zhao, J. Guo, Y. Li, S. Han, L. Huang, Y. Du, Y. Hong, D. Tang, et al. (2013)
PLANT CELL 25, 1383-1399
   Abstract »    Full Text »    PDF »
Modular evolution of phosphorylation-based signalling systems.
J. Jin and T. Pawson (2012)
Phil Trans R Soc B 367, 2540-2555
   Abstract »    Full Text »    PDF »
Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods.
A. Lepisto and E. Rintamaki (2012)
Mol Plant 5, 799-816
   Abstract »    Full Text »    PDF »
Alternative Oxidases (AOX1a and AOX2) Can Functionally Substitute for Plastid Terminal Oxidase in Arabidopsis Chloroplasts.
A. Fu, H. Liu, F. Yu, S. Kambakam, S. Luan, and S. Rodermel (2012)
PLANT CELL 24, 1579-1595
   Abstract »    Full Text »    PDF »
Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase in Response to Light is Not a Major Determinant of Fine Regulation of Transitory Starch Accumulation in Arabidopsis Leaves.
J. Li, G. Almagro, F. J. Munoz, E. Baroja-Fernandez, A. Bahaji, M. Montero, M. Hidalgo, A. M. Sanchez-Lopez, I. Ezquer, M. T. Sesma, et al. (2012)
Plant Cell Physiol. 53, 433-444
   Abstract »    Full Text »    PDF »
Structural basis for the glucan phosphatase activity of Starch Excess4.
C. W. Vander Kooi, A. O. Taylor, R. M. Pace, D. A. Meekins, H.-F. Guo, Y. Kim, and M. S. Gentry (2010)
PNAS 107, 15379-15384
   Abstract »    Full Text »    PDF »
A Putative Phosphatase, LSF1, Is Required for Normal Starch Turnover in Arabidopsis Leaves.
S. Comparot-Moss, O. Kotting, M. Stettler, C. Edner, A. Graf, S. E. Weise, S. Streb, W.-L. Lue, D. MacLean, S. Mahlow, et al. (2010)
Plant Physiology 152, 685-697
   Abstract »    Full Text »    PDF »
STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana.
O. Kotting, D. Santelia, C. Edner, S. Eicke, T. Marthaler, M. S. Gentry, S. Comparot-Moss, J. Chen, A. M. Smith, M. Steup, et al. (2009)
PLANT CELL 21, 334-346
   Abstract »    Full Text »    PDF »
New Connections across Pathways and Cellular Processes: Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis.
Y. Lu, L. J. Savage, I. Ajjawi, K. M. Imre, D. W. Yoder, C. Benning, D. DellaPenna, J. B. Ohlrogge, K. W. Osteryoung, A. P. Weber, et al. (2008)
Plant Physiology 146, 1482-1500
   Abstract »    Full Text »    PDF »
Specificity of RCN1-Mediated Protein Phosphatase 2A Regulation in Meristem Organization and Stress Response in Roots.
J. J. Blakeslee, H.-W. Zhou, J. T. Heath, K. R. Skottke, J. A. R. Barrios, S.-Y. Liu, and A. DeLong (2008)
Plant Physiology 146, 539-553
   Abstract »    Full Text »    PDF »
An Arabidopsis gene network based on the graphical Gaussian model.
S. Ma, Q. Gong, and H. J. Bohnert (2007)
Genome Res. 17, 1614-1625
   Abstract »    Full Text »    PDF »
Glucan, Water Dikinase Activity Stimulates Breakdown of Starch Granules by Plastidial beta-Amylases.
C. Edner, J. Li, T. Albrecht, S. Mahlow, M. Hejazi, H. Hussain, F. Kaplan, C. Guy, S. M. Smith, M. Steup, et al. (2007)
Plant Physiology 145, 17-28
   Abstract »    Full Text »    PDF »
A WD40 Domain Cyclophilin Interacts with Histone H3 and Functions in Gene Repression and Organogenesis in Arabidopsis.
H. Li, Z. He, G. Lu, S. C. Lee, J. Alonso, J. R. Ecker, and S. Luan (2007)
PLANT CELL 19, 2403-2416
   Abstract »    Full Text »    PDF »
The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease.
M. S. Gentry, R. H. Dowen III, C. A. Worby, S. Mattoo, J. R. Ecker, and J. E. Dixon (2007)
J. Cell Biol. 178, 477-488
   Abstract »    Full Text »    PDF »
Thioredoxin-Linked Proteins Are Reduced during Germination of Medicago truncatula Seeds.
F. Alkhalfioui, M. Renard, W. H. Vensel, J. Wong, C. K. Tanaka, W. J. Hurkman, B. B. Buchanan, and F. Montrichard (2007)
Plant Physiology 144, 1559-1579
   Abstract »    Full Text »    PDF »
Gravitropism in the starch excess mutant of Arabidopsis thaliana.
S. Vitha, M. Yang, F. D. Sack, and J. Z. Kiss (2007)
Am. J. Botany 94, 590-598
   Abstract »    Full Text »    PDF »
AKINbeta{gamma} Contributes to SnRK1 Heterotrimeric Complexes and Interacts with Two Proteins Implicated in Plant Pathogen Resistance through Its KIS/GBD Sequence.
L. Gissot, C. Polge, M. Jossier, T. Girin, J.-P. Bouly, M. Kreis, and M. Thomas (2006)
Plant Physiology 142, 931-944
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882