Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (27): 10426-10431

Copyright © 2006 by the National Academy of Sciences.

From the Cover


BIOLOGICAL SCIENCES / NEUROSCIENCE

Inner retinal photoreception independent of the visual retinoid cycle

Daniel C. Tu*, Leah A. Owens*, Lauren Anderson*, Marcin Golczak{dagger}, Susan E. Doyle{ddagger}, Maureen McCall§, Michael Menaker{ddagger}, Krzysztof Palczewski{dagger}, and Russell N. Van Gelder*,||

Departments of *Ophthalmology and Visual Sciences and Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110; {dagger}Department of Pharmacology, Case Western Reserve School of Medicine, Cleveland, OH 44106-4965; {ddagger}Department of Biology, University of Virginia, Charlottesville, VA 22904; §and Departments of Ophthalmology and Visual Sciences and Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292

Edited by Jeremy Nathans, Johns Hopkins University School of Medicine, Baltimore, MD, and approved May 8, 2006

Received for publication February 3, 2006.

Abstract: Mice lacking the visual cycle enzymes RPE65 or lecithin-retinol acyl transferase (Lrat) have pupillary light responses (PLR) that are less sensitive than those of mice with outer retinal degeneration (rd/rd or rdta). Inner retinal photoresponses are mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting that the melanopsin-dependent photocycle utilizes RPE65 and Lrat. To test this hypothesis, we generated rpe65–/–; rdta and lrat–/–; rd/rd mutant mice. Unexpectedly, both rpe65–/–; rdta and lrat–/–; rd/rd mice demonstrate paradoxically increased PLR photosensitivity compared with mice mutant in visual cycle enzymes alone. Acute pharmacologic inhibition of the visual cycle of melanopsin-deficient mice with all-trans-retinylamine results in a near-total loss of PLR sensitivity, whereas treatment of rd/rd mice has no effect, demonstrating that the inner retina does not require the visual cycle. Treatment of rpe65–/–; rdta with 9-cis-retinal partially restores PLR sensitivity. Photic sensitivity in P8 rpe65–/– and lrat–/– ipRGCs is intact as measured by ex vivo multielectrode array recording. These results demonstrate that the melanopsin-dependent ipRGC photocycle is independent of the visual retinoid cycle.

Key Words: melanopsin • pupillary light response • retinal degeneration • retinal ganglion cell • visual photocycle


Author contributions: D.C.T., S.E.D., M. Menaker, K.P., and R.N.V.G. designed research; D.C.T., L.A.O., L.A., M.G., S.E.D., M. McCall, and R.N.V.G. performed research; D.C.T., M.G., S.E.D., M. McCall, M. Menaker, K.P., and R.N.V.G. contributed new reagents/analytic tools; D.C.T., L.A.O., M. Menaker, K.P., and R.N.V.G. analyzed data; and D.C.T., S.E.D., M. Menaker, K.P., and R.N.V.G. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

See Commentary on page 10153.

||To whom correspondence should be addressed. E-mail: vangelder{at}vision.wustl.edu

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Identification of Nonvisual Photomotor Response Cells in the Vertebrate Hindbrain.
D. Kokel, T. W. Dunn, M. B. Ahrens, R. Alshut, C. Y. J. Cheung, L. Saint-Amant, G. Bruni, R. Mateus, T. J. van Ham, T. Shiraki, et al. (2013)
J. Neurosci. 33, 3834-3843
   Abstract »    Full Text »    PDF »
Chromatic Pupillometry Dissects Function of the Three Different Light-Sensitive Retinal Cell Populations in RPE65 Deficiency.
B. Lorenz, E. Strohmayr, S. Zahn, C. Friedburg, M. Kramer, M. Preising, and K. Stieger (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5641-5652
   Abstract »    Full Text »    PDF »
Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo.
T. J. Sexton, M. Golczak, K. Palczewski, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 20888-20897
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
Effect of Circadian Clock Gene Mutations on Nonvisual Photoreception in the Mouse.
L. Owens, E. Buhr, D. C. Tu, T. L. Lamprecht, J. Lee, and R. N. Van Gelder (2012)
Invest. Ophthalmol. Vis. Sci. 53, 454-460
   Abstract »    Full Text »    PDF »
Different Inner Retinal Pathways Mediate Rod-Cone Input in Irradiance Detection for the Pupillary Light Reflex and Regulation of Behavioral State in Mice.
S. Thompson, S. F. Stasheff, J. Hernandez, E. Nylen, J. S. East, R. H. Kardon, L. H. Pinto, R. F. Mullins, and E. M. Stone (2011)
Invest. Ophthalmol. Vis. Sci. 52, 618-623
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive Retinal Ganglion Cells.
M. T. H. Do and K.-W. Yau (2010)
Physiol Rev 90, 1547-1581
   Abstract »    Full Text »    PDF »
Absence of Long-Wavelength Photic Potentiation of Murine Intrinsically Photosensitive Retinal Ganglion Cell Firing In Vitro.
K. Mawad and R. N. Van Gelder (2008)
J Biol Rhythms 23, 387-391
   Abstract »    PDF »
Divergent Phenotypes of Vision and Accessory Visual Function in Mice with Visual Cycle Dysfunction (Rpe65rd12) or Retinal Degeneration (rd/rd).
S. Thompson, R. F. Mullins, A. R. Philp, E. M. Stone, and N. Mrosovsky (2008)
Invest. Ophthalmol. Vis. Sci. 49, 2737-2742
   Abstract »    Full Text »    PDF »
Photic Sensitivity Ranges of Hamster Pupillary and Circadian Phase Responses Do Not Overlap.
R. A. Hut, M. Oklejewicz, C. Rieux, and H. M. Cooper (2008)
J Biol Rhythms 23, 37-48
   Abstract »    PDF »
Light-Evoked Calcium Responses of Isolated Melanopsin-Expressing Retinal Ganglion Cells.
A. T. E. Hartwick, J. R. Bramley, J. Yu, K. T. Stevens, C. N. Allen, W. H. Baldridge, P. J. Sollars, and G. E. Pickard (2007)
J. Neurosci. 27, 13468-13480
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo.
L. S. Mure, C. Rieux, S. Hattar, and H. M. Cooper (2007)
J Biol Rhythms 22, 411-424
   Abstract »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Chromophore regeneration: Melanopsin does its own thing.
R. J. Lucas (2006)
PNAS 103, 10153-10154
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882