Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (3): 762-767

Copyright © 2006 by the National Academy of Sciences.


NEUROSCIENCE

Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines

Lena Scott *, Sergey Zelenin *, Seth Malmersjö *, Jacob M. Kowalewski {dagger}, Eivor Zettergren Markus *, Angus C. Nairn {ddagger}, §, Paul Greengard §, Hjalmar Brismar *, {dagger}, and Anita Aperia *, ¶

*Department of Woman and Child Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q2:09, S-171 76 Stockholm, Sweden; {dagger}Department of Cell Physics, Royal Institute of Technology, S-106 91 Stockholm, Sweden; {ddagger}Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519; and §Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021-6399

Edited by Richard L. Huganir, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 18, 2005

Received for publication July 1, 2005.

Abstract: The dopaminergic and glutamatergic systems interact to initiate and organize normal behavior, a communication that may be perturbed in many neuropsychiatric diseases, including schizophrenia. We show here that NMDA, by allosterically modifying NMDA receptors, can act as a scaffold to recruit laterally diffusing dopamine D1 receptors (D1R) to neuronal spines. Using organotypic culture from rat striatum transfected with D1R fused to a fluorescent protein, we show that the majority of dendritic D1R are in lateral diffusion and that their mobility is confined by interaction with NMDA receptors. Exposure to NMDA reduces the diffusion coefficient for D1R and causes an increase in the number of D1R-positive spines. Unexpectedly, the action of NMDA in potentiating D1R recruitment was independent of calcium flow via the NMDA receptor channel. Thus, a highly energy-efficient, diffusion-trap mechanism can account for intraneuronal interaction between the glutamatergic and dopaminergic systems and for regulation of the number of D1R-positive spines. This diffusion trap system represents a molecular mechanism for brain plasticity and offers a promising target for development of antipsychotic therapy.

Key Words: organotypic cultures • fluorescence recovery after photo-bleaching • lateral diffusion • receptor movement


Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: D1R, D1 receptor; FRAP, fluorescence recovery after photo-bleaching.

To whom correspondence should be addressed. E-mail: anita.aperia{at}kbh.ki.se.

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Neuronal Phenotype Dependency of Agonist-Induced Internalization of the 5-HT1A Serotonin Receptor.
E. Bouaziz, M. B. Emerit, G. Vodjdani, V. Gautheron, M. Hamon, M. Darmon, and J. Masson (2014)
J. Neurosci. 34, 282-294
   Abstract »    Full Text »    PDF »
Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors.
L. Ladepeche, J. P. Dupuis, D. Bouchet, E. Doudnikoff, L. Yang, Y. Campagne, E. Bezard, E. Hosy, and L. Groc (2013)
PNAS 110, 18005-18010
   Abstract »    Full Text »    PDF »
A Noncanonical Postsynaptic Transport Route for a GPCR Belonging to the Serotonin Receptor Family.
T. Liebmann, M. Kruusmagi, N. Sourial-Bassillious, A. Bondar, P. Svenningsson, M. Flajolet, P. Greengard, L. Scott, H. Brismar, and A. Aperia (2012)
J. Neurosci. 32, 17998-18008
   Abstract »    Full Text »    PDF »
Binding of Losartan to Angiotensin AT1 Receptors Increases Dopamine D1 Receptor Activation.
D. Li, L. Scott, S. Crambert, S. Zelenin, A.-C. Eklof, L. Di Ciano, F. Ibarra, and A. Aperia (2012)
J. Am. Soc. Nephrol. 23, 421-428
   Abstract »    Full Text »    PDF »
Integrin-mediated Cell Attachment Induces a PAK4-dependent Feedback Loop Regulating Cell Adhesion through Modified Integrin {alpha}v{beta}5 Clustering and Turnover.
Z. Li, J. G. Lock, H. Olofsson, J. M. Kowalewski, S. Teller, Y. Liu, H. Zhang, and S. Stromblad (2010)
Mol. Biol. Cell 21, 3317-3329
   Abstract »    Full Text »    PDF »
Activation of Glycogen Synthase Kinase-3{beta} Is Required for Hyperdopamine and D2 Receptor-Mediated Inhibition of Synaptic NMDA Receptor Function in the Rat Prefrontal Cortex.
Y.-C. Li, D. Xi, J. Roman, Y.-Q. Huang, and W.-J. Gao (2009)
J. Neurosci. 29, 15551-15563
   Abstract »    Full Text »    PDF »
PSD-95 Uncouples Dopamine-Glutamate Interaction in the D1/PSD-95/NMDA Receptor Complex.
J. Zhang, T.-X. Xu, P. J. Hallett, M. Watanabe, S. G. N. Grant, O. Isacson, and W.-D. Yao (2009)
J. Neurosci. 29, 2948-2960
   Abstract »    Full Text »    PDF »
Dendritic Spine Morphology Determines Membrane-Associated Protein Exchange between Dendritic Shafts and Spine Heads.
S. Hugel, M. Abegg, V. de Paola, P. Caroni, B. H. Gahwiler, and R. A. McKinney (2009)
Cereb Cortex 19, 697-702
   Abstract »    Full Text »    PDF »
Dopamine D1 receptor inhibition of NMDA receptor currents mediated by tyrosine kinase-dependent receptor trafficking in neonatal rat striatum.
H. Tong and A. J. Gibb (2008)
J. Physiol. 586, 4693-4707
   Abstract »    Full Text »    PDF »
Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells.
F. Khan, Z. Spicarova, S. Zelenin, U. Holtback, L. Scott, and A. Aperia (2008)
Am J Physiol Renal Physiol 295, F1110-F1116
   Abstract »    Full Text »    PDF »
Functional disturbances in the striatum by region-specific ablation of NMDA receptors.
N. Ohtsuka, M. F. Tansky, H. Kuang, S. Kourrich, M. J. Thomas, J. L. R. Rubenstein, M. Ekker, S. E. Leeman, and J. Z. Tsien (2008)
PNAS 105, 12961-12966
   Abstract »    Full Text »    PDF »
Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization.
C. Fiorentini, C. Busi, E. Gorruso, C. Gotti, P. Spano, and C. Missale (2008)
Mol. Pharmacol. 74, 59-69
   Abstract »    Full Text »    PDF »
Ankyrin B Modulates the Function of Na,K-ATPase/Inositol 1,4,5-Trisphosphate Receptor Signaling Microdomain.
X. Liu, Z. Spicarova, S. Rydholm, J. Li, H. Brismar, and A. Aperia (2008)
J. Biol. Chem. 283, 11461-11468
   Abstract »    Full Text »    PDF »
Dynamics of Somatostatin Type 2A Receptor Cargoes in Living Hippocampal Neurons.
B. Lelouvier, G. Tamagno, A. M. Kaindl, A. Roland, V. Lelievre, V. Le Verche, C. Loudes, P. Gressens, A. Faivre-Baumann, Z. Lenkei, et al. (2008)
J. Neurosci. 28, 4336-4349
   Abstract »    Full Text »    PDF »
Lateral Diffusion of the GABAB Receptor Is Regulated by the GABAB2 C Terminus.
A. M. Pooler and R. A. J. McIlhinney (2007)
J. Biol. Chem. 282, 25349-25356
   Abstract »    Full Text »    PDF »
Physical Association between Neuropeptide FF and {micro}-Opioid Receptors as a Possible Molecular Basis for Anti-opioid Activity.
M. Roumy, C. Lorenzo, S. Mazeres, S. Bouchet, J.-M. Zajac, and C. Mollereau (2007)
J. Biol. Chem. 282, 8332-8342
   Abstract »    Full Text »    PDF »
Where Do You Think You Are Going? The NMDA-D1 Receptor Trap.
C. Cepeda and M. S. Levine (2006)
Sci. STKE 2006, pe20
   Abstract »    Full Text »    PDF »
Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses.
L. Cognet, L. Groc, B. Lounis, and D. Choquet (2006)
Sci. STKE 2006, pe13
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882