Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (30): 11405-11410

Copyright © 2006 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / PHYSIOLOGY

Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision

Claus Cursiefen*,{dagger}, Lu Chen*, Magali Saint-Geniez*, Pedram Hamrah*, Yiping Jin*, Saadia Rashid*, Bronislaw Pytowski{ddagger}, Kris Persaud{ddagger}, Yan Wu{ddagger}, J. Wayne Streilein*,§, and Reza Dana*

*Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114; {dagger}Department of Ophthalmology, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; and {ddagger}ImClone Systems, Inc., 180 Varick Street, New York, NY 10014

Edited by Judah Folkman, Harvard Medical School, Boston, MA, and approved June 9, 2006

Received for publication July 22, 2005.

Abstract: Transparency of the cornea, the window of the eye, is a prerequisite for vision. Angiogenesis into the normally avascular cornea is incompatible with good vision and, therefore, the cornea is one of the few tissues in the human body where avascularity is actively maintained. Here, we provide evidence for a critical mechanism contributing to corneal avascularity. VEGF receptor 3, normally present on lymphatic and proliferating blood vascular endothelium, is strongly constitutively expressed by corneal epithelium and is mechanistically responsible for suppressing inflammatory corneal angiogenesis.

Key Words: angiogenesis • cornea • lymphatics • inflammation


§Deceased March 15, 2004.

Author contributions: C.C., M.S.-G., J.W.S., and R.D. designed research; C.C., L.C., M.S.-G., P.H., Y.J., S.R., B.P., K.P., and Y.W. performed research; L.C., Y.J., S.R., B.P., K.P., and Y.W. contributed new reagents/analytic tools; C.C., J.W.S., and R.D. analyzed data; and C.C., J.W.S., and R.D. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

To whom correspondence should be addressed. E-mail: dana{at}vision.eri.harvard.edu

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Serum Eyedrops Antagonize the Anti(lymph)angiogenic Effects of Bevacizumab In Vitro and In Vivo.
D. Hos, K. R. Koch, F. Bucher, F. Bock, C. Cursiefen, and L. M. Heindl (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6133-6142
   Abstract »    Full Text »    PDF »
Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity.
N. Singh, M. Tiem, R. Watkins, Y. K. Cho, Y. Wang, T. Olsen, H. Uehara, C. Mamalis, L. Luo, Z. Oakey, et al. (2013)
Blood 121, 4242-4249
   Abstract »    Full Text »    PDF »
Nerves and Neovessels Inhibit Each Other in the Cornea.
G. Ferrari, A. R. Hajrasouliha, Z. Sadrai, H. Ueno, S. K. Chauhan, and R. Dana (2013)
Invest. Ophthalmol. Vis. Sci. 54, 813-820
   Abstract »    Full Text »    PDF »
Klf4 Regulates the Expression of Slurp1, Which Functions as an Immunomodulatory Peptide in the Mouse Cornea.
S. Swamynathan, K.-A. Buela, P. Kinchington, K. L. Lathrop, H. Misawa, R. L. Hendricks, and S. K. Swamynathan (2012)
Invest. Ophthalmol. Vis. Sci. 53, 8433-8446
   Abstract »    Full Text »    PDF »
MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism.
H. Peng, R. B. Hamanaka, J. Katsnelson, L.-L. Hao, W. Yang, N. S. Chandel, and R. M. Lavker (2012)
FASEB J 26, 3140-3147
   Abstract »    Full Text »    PDF »
Critical Role of TNF-{alpha}-Induced Macrophage VEGF and iNOS Production in the Experimental Corneal Neovascularization.
P. Lu, L. Li, G. Liu, T. Baba, Y. Ishida, M. Nosaka, T. Kondo, X. Zhang, and N. Mukaida (2012)
Invest. Ophthalmol. Vis. Sci. 53, 3516-3526
   Abstract »    Full Text »    PDF »
The Maintenance of Lymphatic Vessels in the Cornea Is Dependent on the Presence of Macrophages.
K. Maruyama, T. Nakazawa, C. Cursiefen, Y. Maruyama, N. Van Rooijen, P. A. D'Amore, and S. Kinoshita (2012)
Invest. Ophthalmol. Vis. Sci. 53, 3145-3153
   Abstract »    Full Text »    PDF »
Vascular Endothelial Growth Factor-C Promotes Alloimmunity by Amplifying Antigen-Presenting Cell Maturation and Lymphangiogenesis.
A. R. Hajrasouliha, T. Funaki, Z. Sadrai, T. Hattori, S. K. Chauhan, and R. Dana (2012)
Invest. Ophthalmol. Vis. Sci. 53, 1244-1250
   Abstract »    Full Text »    PDF »
Imaging and Evaluation of Corneal Vascularization Using Fluorescein and Indocyanine Green Angiography.
D. R. Anijeet, Y. Zheng, A. Tey, M. Hodson, H. Sueke, and S. B. Kaye (2012)
Invest. Ophthalmol. Vis. Sci. 53, 650-658
   Abstract »    Full Text »    PDF »
Consensus statement on indications for anti-angiogenic therapy in the management of corneal diseases associated with neovascularisation: outcome of an expert roundtable.
C. Cursiefen, J. Colin, R. Dana, M. Diaz-Llopis, L. A. Faraj, S. Garcia-Delpech, G. Geerling, F. W. Price, L. Remeijer, B. T. Rouse, et al. (2012)
Br J Ophthalmol 96, 3-9
   Abstract »    Full Text »    PDF »
Pharmacologic Uncoupling of Angiogenesis and Inflammation during Initiation of Pathological Corneal Neovascularization.
J. M. Sivak, A. C. Ostriker, A. Woolfenden, J. Demirs, R. Cepeda, D. Long, K. Anderson, and B. Jaffee (2011)
J. Biol. Chem. 286, 44965-44975
   Abstract »    Full Text »    PDF »
VIP and Growth Factors in the Infected Cornea.
X. Jiang, S. A. McClellan, R. P. Barrett, E. A. Berger, Y. Zhang, and L. D. Hazlett (2011)
Invest. Ophthalmol. Vis. Sci. 52, 6154-6161
   Abstract »    Full Text »    PDF »
Blockade of Insulin Receptor Substrate-1 Inhibits Corneal Lymphangiogenesis.
D. Hos, B. Regenfuss, F. Bock, J. Onderka, and C. Cursiefen (2011)
Invest. Ophthalmol. Vis. Sci. 52, 5778-5785
   Abstract »    Full Text »    PDF »
Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes.
C. Cursiefen, K. Maruyama, F. Bock, D. Saban, Z. Sadrai, J. Lawler, R. Dana, and S. Masli (2011)
J. Exp. Med. 208, 1083-1092
   Abstract »    Full Text »    PDF »
Selective Activation of the Prostaglandin E2 Circuit in Chronic Injury-Induced Pathologic Angiogenesis.
E. L. Liclican, V. Nguyen, A. B. Sullivan, and K. Gronert (2010)
Invest. Ophthalmol. Vis. Sci. 51, 6311-6320
   Abstract »    Full Text »    PDF »
Intracellular Thiol Redox Status Regulates Lymphangiogenesis and Dictates Corneal Limbal Graft Survival.
A. Fukumoto, K. Maruyama, T. Walsh, K. Kajiya, J. Hamuro, P. A. D'Amore, and S. Kinoshita (2010)
Invest. Ophthalmol. Vis. Sci. 51, 2450-2458
   Abstract »    Full Text »    PDF »
Enhanced Experimental Corneal Neovascularization along with Aberrant Angiogenic Factor Expression in the Absence of IL-1 Receptor Antagonist.
P. Lu, L. Li, G. Liu, X. Zhang, and N. Mukaida (2009)
Invest. Ophthalmol. Vis. Sci. 50, 4761-4768
   Abstract »    Full Text »    PDF »
Safety Profile of Topical VEGF Neutralization at the Cornea.
F. Bock, J. Onderka, C. Rummelt, T. Dietrich, B. Bachmann, F. E. Kruse, U. Schlotzer-Schrehardt, and C. Cursiefen (2009)
Invest. Ophthalmol. Vis. Sci. 50, 2095-2102
   Abstract »    Full Text »    PDF »
Vascular Endothelial Growth Factor Mediates Corneal Nerve Repair.
C. Q. Yu, M. Zhang, K. I. Matis, C. Kim, and M. I. Rosenblatt (2008)
Invest. Ophthalmol. Vis. Sci. 49, 3870-3878
   Abstract »    Full Text »    PDF »
Inflammatory Corneal (Lymph)angiogenesis Is Blocked by VEGFR-Tyrosine Kinase Inhibitor ZK 261991, Resulting in Improved Graft Survival after Corneal Transplantation.
D. Hos, F. Bock, T. Dietrich, J. Onderka, F. E. Kruse, K.-H. Thierauch, and C. Cursiefen (2008)
Invest. Ophthalmol. Vis. Sci. 49, 1836-1842
   Abstract »    Full Text »    PDF »
VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes.
C. Halin, N. E. Tobler, B. Vigl, L. F. Brown, and M. Detmar (2007)
Blood 110, 3158-3167
   Abstract »    Full Text »    PDF »
Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism.
J. W. Breslin, N. Gaudreault, K. D. Watson, R. Reynoso, S. Y. Yuan, and M. H. Wu (2007)
Am J Physiol Heart Circ Physiol 293, H709-H718
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882