Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 103 (33): 12569-12574

Copyright © 2006 by the National Academy of Sciences.


Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor

Yoshiro Ishimaru*, Hitoshi Inada{dagger}, Momoka Kubota*, Hanyi Zhuang*, Makoto Tominaga{dagger},{ddagger}, and Hiroaki Matsunami*,§

Departments of *Molecular Genetics and Microbiology and §Neurobiology, Duke University Medical Center, Research Drive, Durham, NC 27710; {dagger}Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; and {ddagger}Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan

Edited by Linda B. Buck, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved June 26, 2006

Received for publication April 3, 2006.

Abstract: Animals use their gustatory systems to evaluate the nutritious value, toxicity, sodium content, and acidity of food. Although characterization of molecular identities that receive taste chemicals is essential, molecular receptors underlying sour taste sensation remain unclear. Here, we show that two transient receptor potential (TRP) channel members, PKD1L3 and PKD2L1, are coexpressed in a subset of taste receptor cells in specific taste areas. Cells expressing these molecules are distinct from taste cells having receptors for bitter, sweet, or umami tastants. The PKD2L1 proteins are accumulated at the taste pore region, where taste chemicals are detected. PKD1L3 and PKD2L1 proteins can interact with each other, and coexpression of the PKD1L3 and PKD2L1 is necessary for their functional cell surface expression. Finally, PKD1L3 and PKD2L1 are activated by various acids when coexpressed in heterologous cells but not by other classes of tastants. These results suggest that PKD1L3 and PKD2L1 heteromers may function as sour taste receptors.

Key Words: chemical senses • polycystic kidney disease • gustation • ion channel • acid

Freely available online through the PNAS open access option.

Author contributions: M.T. and H.M. designed research; Y.I., H.I., M.K., and H.Z. performed research; Y.I. and H.I. analyzed data; and H.M. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

To whom correspondence should be addressed. E-mail: hiroaki.matsunami{at}

© 2006 by The National Academy of Sciences of the USA

Left-right asymmetry: cilia stir up new surprises in the node.
D. Babu and S. Roy (2013)
Open Bio 3, 130052
   Abstract »    Full Text »    PDF »
Angiotensin II Modulates Salty and Sweet Taste Sensitivities.
N. Shigemura, S. Iwata, K. Yasumatsu, T. Ohkuri, N. Horio, K. Sanematsu, R. Yoshida, R. F. Margolskee, and Y. Ninomiya (2013)
J. Neurosci. 33, 6267-6277
   Abstract »    Full Text »    PDF »
Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli.
J. A. DeSimone, Z. Ren, T.-H. T. Phan, G. L. Heck, S. Mummalaneni, and V. Lyall (2012)
J Neurophysiol 108, 3206-3220
   Abstract »    Full Text »    PDF »
Acetic acid modulates spike rate and spike latency to salt in peripheral gustatory neurons of rats.
J. M. Breza and R. J. Contreras (2012)
J Neurophysiol 108, 2405-2418
   Abstract »    Full Text »    PDF »
Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem.
A. Orts-Del'Immagine, N. Wanaverbecq, C. Tardivel, V. Tillement, M. Dallaporta, and J. Trouslard (2012)
J. Physiol. 590, 3719-3741
   Abstract »    Full Text »    PDF »
Receptor for Activated C Kinase 1 (RACK1) Inhibits Function of Transient Receptor Potential (TRP)-type Channel Pkd2L1 through Physical Interaction.
J. Yang, Q. Wang, W. Zheng, J. Tuli, Q. Li, Y. Wu, S. Hussein, X.-Q. Dai, S. Shafiei, X.-G. Li, et al. (2012)
J. Biol. Chem. 287, 6551-6561
   Abstract »    Full Text »    PDF »
A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes.
D. G. MacArthur, S. Balasubramanian, A. Frankish, N. Huang, J. Morris, K. Walter, L. Jostins, L. Habegger, J. K. Pickrell, S. B. Montgomery, et al. (2012)
Science 335, 823-828
   Abstract »    Full Text »    PDF »
Green Tea Polyphenol Epigallocatechin Gallate Activates TRPA1 in an Intestinal Enteroendocrine Cell Line, STC-1.
M. Kurogi, M. Miyashita, Y. Emoto, Y. Kubo, and O. Saitoh (2012)
Chem Senses 37, 167-177
   Abstract »    Full Text »    PDF »
A Gustotopic Map of Taste Qualities in the Mammalian Brain.
X. Chen, M. Gabitto, Y. Peng, N. J. P. Ryba, and C. S. Zuker (2011)
Science 333, 1262-1266
   Abstract »    Full Text »    PDF »
Citric Acid and Quinine Share Perceived Chemosensory Features Making Oral Discrimination Difficult in C57BL/6J Mice.
Y. Treesukosol, C. M. Mathes, and A. C. Spector (2011)
Chem Senses 36, 477-489
   Abstract »    Full Text »    PDF »
A TRPA1-dependent mechanism for the pungent sensation of weak acids.
Y. Y. Wang, R. B. Chang, S. D. Allgood, W. L. Silver, and E. R. Liman (2011)
J. Gen. Physiol. 137, 493-505
   Abstract »    Full Text »    PDF »
Involvement of NADPH-Dependent and cAMP-PKA Sensitive H+ Channels in the Chorda Tympani Nerve Responses to Strong Acids.
J. A. DeSimone, T.-H. T. Phan, G. L. Heck, Z. Ren, J. Coleman, S. Mummalaneni, P. Melone, and V. Lyall (2011)
Chem Senses 36, 389-403
   Abstract »    Full Text »    PDF »
The K+-H+ Exchanger, Nigericin, Modulates Taste Cell pH and Chorda Tympani Taste Nerve Responses to Acidic Stimuli.
G. R. Sturz, T.-H. T. Phan, S. Mummalaneni, Z. Ren, J. A. DeSimone, and V. Lyall (2011)
Chem Senses 36, 375-388
   Abstract »    Full Text »    PDF »
Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis.
K. Kamura, D. Kobayashi, Y. Uehara, S. Koshida, N. Iijima, A. Kudo, T. Yokoyama, and H. Takeda (2011)
Development 138, 1121-1129
   Abstract »    Full Text »    PDF »
Activation State of the M3 Muscarinic Acetylcholine Receptor Modulates Mammalian Odorant Receptor Signaling.
Y. R. Li and H. Matsunami (2011)
Science Signaling 4, ra1
   Abstract »    Full Text »    PDF »
A proton current drives action potentials in genetically identified sour taste cells.
R. B. Chang, H. Waters, and E. R. Liman (2010)
PNAS 107, 22320-22325
   Abstract »    Full Text »    PDF »
Calcium Signaling in Taste Cells: Regulation Required.
K. F. Medler (2010)
Chem Senses 35, 753-765
   Abstract »    Full Text »    PDF »
Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae.
Y. Ishimaru, Y. Katano, K. Yamamoto, M. Akiba, T. Misaka, R. W. Roberts, T. Asakura, H. Matsunami, and K. Abe (2010)
FASEB J 24, 4058-4067
   Abstract »    Full Text »    PDF »
The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling.
M. Gees, B. Colsoul, and B. Nilius (2010)
Cold Spring Harb Perspect Biol 2, a003962
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family.
L.-J. Wu, T.-B. Sweet, and D. E. Clapham (2010)
Pharmacol. Rev. 62, 381-404
   Abstract »    Full Text »    PDF »
Taste Function in Mice with a Targeted Mutation of the Pkd1l3 Gene.
T. M. Nelson, N. D. LopezJimenez, L. Tessarollo, M. Inoue, A. A. Bachmanov, and S. L. Sullivan (2010)
Chem Senses 35, 565-577
   Abstract »    Full Text »    PDF »
The Search for Mechanisms Underlying the Sour Taste Evoked by Acids Continues.
C. D. Dotson (2010)
Chem Senses 35, 545-547
   Abstract »    Full Text »    PDF »
Review series: The cell biology of taste.
N. Chaudhari and S. D. Roper (2010)
J. Cell Biol. 190, 285-296
   Abstract »    Full Text »    PDF »
Taste Solution Consumption by FHH-Chr nBN Consomic Rats.
M. G. Tordoff (2010)
Chem Senses 35, 473-489
   Abstract »    Full Text »    PDF »
Activation of Polycystic Kidney Disease-2-like 1 (PKD2L1)-PKD1L3 Complex by Acid in Mouse Taste Cells.
H. Kawaguchi, A. Yamanaka, K. Uchida, K. Shibasaki, T. Sokabe, Y. Maruyama, Y. Yanagawa, S. Murakami, and M. Tominaga (2010)
J. Biol. Chem. 285, 17277-17281
   Abstract »    Full Text »    PDF »
A polycystin-2 (TRPP2) dimerization domain essential for the function of heteromeric polycystin complexes.
A. Giamarchi, S. Feng, L. Rodat-Despoix, Y. Xu, E. Bubenshchikova, L. J. Newby, J. Hao, C. Gaudioso, M. Crest, A. N. Lupas, et al. (2010)
EMBO J. 29, 1176-1191
   Abstract »    Full Text »    PDF »
Involvement of the Calcium-sensing Receptor in Human Taste Perception.
T. Ohsu, Y. Amino, H. Nagasaki, T. Yamanaka, S. Takeshita, T. Hatanaka, Y. Maruyama, N. Miyamura, and Y. Eto (2010)
J. Biol. Chem. 285, 1016-1022
   Abstract »    Full Text »    PDF »
TRP channels: new targets for visceral pain.
L A Blackshaw, S M Brierley, and P A Hughes (2010)
Gut 59, 126-135
   Full Text »    PDF »
Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels.
R. Dando and S. D. Roper (2009)
J. Physiol. 587, 5899-5906
   Abstract »    Full Text »    PDF »
The Taste of Carbonation.
J. Chandrashekar, D. Yarmolinsky, L. von Buchholtz, Y. Oka, W. Sly, N. J. P. Ryba, and C. S. Zuker (2009)
Science 326, 443-445
   Abstract »    Full Text »    PDF »
Upregulation of PKD1L2 provokes a complex neuromuscular disease in the mouse.
F. E. Mackenzie, R. Romero, D. Williams, T. Gillingwater, H. Hilton, J. Dick, J. Riddoch-Contreras, F. Wong, L. Ireson, N. Powles-Glover, et al. (2009)
Hum. Mol. Genet. 18, 3553-3566
   Abstract »    Full Text »    PDF »
Discrimination of taste qualities among mouse fungiform taste bud cells.
R. Yoshida, A. Miyauchi, T. Yasuo, M. Jyotaki, Y. Murata, K. Yasumatsu, N. Shigemura, Y. Yanagawa, K. Obata, H. Ueno, et al. (2009)
J. Physiol. 587, 4425-4439
   Abstract »    Full Text »    PDF »
Responses of the Hamster Chorda Tympani Nerve to Sucrose+Acid and Sucrose+Citrate Taste Mixtures.
B. K. Formaker, H. Lin, T. P. Hettinger, and M. E. Frank (2009)
Chem Senses 34, 607-616
   Abstract »    Full Text »    PDF »
Smelling the difference: controversial ideas in insect olfaction.
M. Pellegrino and T. Nakagawa (2009)
J. Exp. Biol. 212, 1973-1979
   Abstract »    Full Text »    PDF »
Functional Expression of Miraculin, a Taste-Modifying Protein in Escherichia Coli.
T. Matsuyama, M. Satoh, R. Nakata, T. Aoyama, and H. Inoue (2009)
J. Biochem. 145, 445-450
   Abstract »    Full Text »    PDF »
Transient Receptor Potential (TRP) Channels and Taste Sensation.
Y. Ishimaru and H. Matsunami (2009)
Journal of Dental Research 88, 212-218
   Abstract »    PDF »
Mitochondrial Calcium Buffering Contributes to the Maintenance of Basal Calcium Levels in Mouse Taste Cells.
K. Hacker and K. F. Medler (2008)
J Neurophysiol 100, 2177-2191
   Abstract »    Full Text »    PDF »
Off-response property of an acid-activated cation channel complex PKD1L3-PKD2L1.
H. Inada, F. Kawabata, Y. Ishimaru, T. Fushiki, H. Matsunami, and M. Tominaga (2008)
EMBO Rep. 9, 690-697
   Abstract »    Full Text »    PDF »
A polycystin-1 controls postcopulatory reproductive selection in mice.
K. A. Sutton, M. K. Jungnickel, and H. M. Florman (2008)
PNAS 105, 8661-8666
   Abstract »    Full Text »    PDF »
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
Y. A. Huang, Y. Maruyama, R. Stimac, and S. D. Roper (2008)
J. Physiol. 586, 2903-2912
   Abstract »    Full Text »    PDF »
Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1.
S. Shibazaki, Z. Yu, S. Nishio, X. Tian, R. B. Thomson, M. Mitobe, A. Louvi, H. Velazquez, S. Ishibe, L. G. Cantley, et al. (2008)
Hum. Mol. Genet. 17, 1505-1516
   Abstract »    Full Text »    PDF »
Activation of TRPP2 through mDia1-dependent voltage gating.
C.-X. Bai, S. Kim, W.-P. Li, A. J. Streets, A. C. M. Ong, and L. Tsiokas (2008)
EMBO J. 27, 1345-1356
   Abstract »    Full Text »    PDF »
The Candidate Sour Taste Receptor, PKD2L1, Is Expressed by Type III Taste Cells in the Mouse.
S. Kataoka, R. Yang, Y. Ishimaru, H. Matsunami, J. Sevigny, J. C. Kinnamon, and T. E. Finger (2008)
Chem Senses 33, 243-254
   Abstract »    Full Text »    PDF »
Inhibition of TRPP3 Channel by Amiloride and Analogs.
X.-Q. Dai, A. Ramji, Y. Liu, Q. Li, E. Karpinski, and X.-Z. Chen (2007)
Mol. Pharmacol. 72, 1576-1585
   Abstract »    Full Text »    PDF »
Breadth of Tuning and Taste Coding in Mammalian Taste Buds.
S. M. Tomchik, S. Berg, J. W. Kim, N. Chaudhari, and S. D. Roper (2007)
J. Neurosci. 27, 10840-10848
   Abstract »    Full Text »    PDF »
Twin Study of the Heritability of Recognition Thresholds for Sour and Salty Taste.
P. M. Wise, J. L. Hansen, D. R. Reed, and P. A. S. Breslin (2007)
Chem Senses 32, 749-754
   Abstract »    Full Text »    PDF »
Effect of Nicotine on Chorda Tympani Responses to Salty and Sour Stimuli.
V. Lyall, T.-H. T. Phan, S. Mummalaneni, M. Mansouri, G. L. Heck, G. Kobal, and J. A. DeSimone (2007)
J Neurophysiol 98, 1662-1674
   Abstract »    Full Text »    PDF »
STAM and Hrs Down-Regulate Ciliary TRP Receptors.
J. Hu, S. G. Wittekind, and M. M. Barr (2007)
Mol. Biol. Cell 18, 3277-3289
   Abstract »    Full Text »    PDF »
Smell and taste on a high: Symposium on Chemical Senses: From Genes to Perception.
K. Asahina and R. Benton (2007)
EMBO Rep. 8, 634-638
   Full Text »    PDF »
Characterization of Ligands for Fish Taste Receptors.
H. Oike, T. Nagai, A. Furuyama, S. Okada, Y. Aihara, Y. Ishimaru, T. Marui, I. Matsumoto, T. Misaka, and K. Abe (2007)
J. Neurosci. 27, 5584-5592
   Abstract »    Full Text »    PDF »
Synergism of Accessory Factors in Functional Expression of Mammalian Odorant Receptors.
H. Zhuang and H. Matsunami (2007)
J. Biol. Chem. 282, 15284-15293
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882