Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 103 (5): 1289-1294

Copyright © 2006 by the National Academy of Sciences.


CELL BIOLOGY

Oncogenic transformation induced by the p110beta, -{gamma}, and -{delta} isoforms of class I phosphoinositide 3-kinase

Sohye Kang*, Adam Denley*, Bart Vanhaesebroeck{dagger},{ddagger}, and Peter K. Vogt*,§

*Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC 239, La Jolla, CA 92037; {dagger}Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, United Kingdom; and {ddagger}Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom

Contributed by Peter K. Vogt, December 13, 2005

Abstract: Class I phosphoinositide 3-kinase contains four isoforms of the catalytic subunit, p110{alpha}, -beta, -{gamma}, and -{delta}. At physiological levels of expression, the wild-type p110{alpha} isoform lacks oncogenic potential, but gain-of-function mutations and overexpression of p110{alpha} are correlated with oncogenicity. The p110beta, -{gamma}, and -{delta} isoforms induce transformation of cultured cells as wild-type proteins. This oncogenic potential requires kinase activity and can be suppressed by the target of rapamycin inhibitor rapamycin. The p110{delta} isoform constitutively activates the Akt signaling pathway; p110{gamma} activates Akt only in the presence of serum. The isoforms differ in their requirements for upstream signaling. The transforming activity of the p110{gamma} isoform depends on rat sarcoma viral oncogene homolog (Ras) binding; preliminary data suggest the same for p110beta and indicate Ras-independent oncogenic potential of p110{delta}. The surprising oncogenic potential of the wild-type non-{alpha} isoforms of class I phosphoinositide 3-kinase may explain the dearth of cancer-specific mutations in these proteins, because these non-{alpha} isoforms could contribute to the oncogenic phenotype of the cell by differential expression.

Key Words: Akt


Author contributions: S.K. and P.K.V. designed research; S.K. and A.D. performed research; B.V. contributed new reagents/analytic tools;

Conflict of interest statement: No conflicts declared.

Abbreviations: CEF, chicken embryo fibroblasts; PI3K, phosphoinositide 3-kinase; RCAS, replication-competent avian leukosis virus with splice acceptor; TOR, target of rapamycin.

§ To whom correspondence should be addressed. E-mail: pkvogt{at}scripps.edu.

© 2006 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Phosphoinositide 3-Kinase {delta} Regulates Migration and Invasion of Synoviocytes in Rheumatoid Arthritis.
B. Bartok, D. Hammaker, and G. S. Firestein (2014)
J. Immunol. 192, 2063-2070
   Abstract »    Full Text »    PDF »
Molecular determinants of PI3K{gamma}-mediated activation downstream of G-protein-coupled receptors (GPCRs).
O. Vadas, H. A. Dbouk, A. Shymanets, O. Perisic, J. E. Burke, W. F. Abi Saab, B. D. Khalil, C. Harteneck, A. R. Bresnick, B. Nurnberg, et al. (2013)
PNAS 110, 18862-18867
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase {delta} Gene Mutation Predisposes to Respiratory Infection and Airway Damage.
I. Angulo, O. Vadas, F. Garcon, E. Banham-Hall, V. Plagnol, T. R. Leahy, H. Baxendale, T. Coulter, J. Curtis, C. Wu, et al. (2013)
Science 342, 866-871
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Gata3 antagonizes cancer progression in Pten-deficient prostates.
A. H. T. Nguyen, M. Tremblay, K. Haigh, I. H. Koumakpayi, M. Paquet, P. P. Pandolfi, A.-M. Mes-Masson, F. Saad, J. J. Haigh, and M. Bouchard (2013)
Hum. Mol. Genet. 22, 2400-2410
   Abstract »    Full Text »    PDF »
miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression.
C. C. Mandal, T. Ghosh-Choudhury, N. Dey, G. G. Choudhury, and N. Ghosh-Choudhury (2012)
Carcinogenesis 33, 1897-1908
   Abstract »    Full Text »    PDF »
Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer.
M. Yu and W. M. Grady (2012)
Therapeutic Advances in Gastroenterology 5, 319-337
   Abstract »    PDF »
Hepatitis C Virus Upregulates Beclin1 for Induction of Autophagy and Activates mTOR Signaling.
S. Shrivastava, J. Bhanja Chowdhury, R. Steele, R. Ray, and R. B. Ray (2012)
J. Virol. 86, 8705-8712
   Abstract »    Full Text »    PDF »
Molecular Pathways: Targeting Phosphoinositide 3-Kinase p110-Delta in Chronic Lymphocytic Leukemia.
S. E. M. Herman and A. J. Johnson (2012)
Clin. Cancer Res. 18, 4013-4018
   Abstract »    Full Text »    PDF »
PI3 Kinase Inhibitors in the Clinic: An Update.
J.-E. KURTZ and I. RAY-COQUARD (2012)
Anticancer Res 32, 2463-2470
   Abstract »    Full Text »    PDF »
High levels of p110{delta} PI3K expression in solid tumor cells suppress PTEN activity, generating cellular sensitivity to p110{delta} inhibitors through PTEN activation.
N. Tzenaki, M. Andreou, K. Stratigi, A. Vergetaki, A. Makrigiannakis, B. Vanhaesebroeck, and E. A. Papakonstanti (2012)
FASEB J 26, 2498-2508
   Abstract »    Full Text »    PDF »
The p110{delta} subunit of PI3K regulates bone marrow-derived eosinophil trafficking and airway eosinophilia in allergen-challenged mice.
B. N. Kang, S. G. Ha, X. N. Ge, M. Reza Hosseinkhani, N. S. Bahaie, Y. Greenberg, M. N. Blumenthal, K. D. Puri, S. P. Rao, and P. Sriramarao (2012)
Am J Physiol Lung Cell Mol Physiol 302, L1179-L1191
   Abstract »    Full Text »    PDF »
Beta-Testing of PI3-Kinase Inhibitors: Is Beta Better?.
P. R. Shepherd and W. A. Denny (2012)
Cancer Discovery 2, 393-394
   Abstract »    Full Text »    PDF »
PI3K{delta} Inhibitors in Cancer: Rationale and Serendipity Merge in the Clinic.
D. A. Fruman and C. Rommel (2011)
Cancer Discovery 1, 562-572
   Abstract »    Full Text »    PDF »
PF-04691502, a Potent and Selective Oral Inhibitor of PI3K and mTOR Kinases with Antitumor Activity.
J. Yuan, P. P. Mehta, M.-J. Yin, S. Sun, A. Zou, J. Chen, K. Rafidi, Z. Feng, J. Nickel, J. Engebretsen, et al. (2011)
Mol. Cancer Ther. 10, 2189-2199
   Abstract »    Full Text »    PDF »
Structural Basis for Activation and Inhibition of Class I Phosphoinositide 3-Kinases.
O. Vadas, J. E. Burke, X. Zhang, A. Berndt, and R. L. Williams (2011)
Science Signaling 4, re2
   Abstract »    Full Text »    PDF »
Essential role of Stat3 in PI3K-induced oncogenic transformation.
J. R. Hart, L. Liao, J. R. Yates III, and P. K. Vogt (2011)
PNAS 108, 13247-13252
   Abstract »    Full Text »    PDF »
A biochemical mechanism for the oncogenic potential of the p110{beta} catalytic subunit of phosphoinositide 3-kinase.
H. A. Dbouk, H. Pang, A. Fiser, and J. M. Backer (2010)
PNAS 107, 19897-19902
   Abstract »    Full Text »    PDF »
Key Role of Phosphoinositide 3-Kinase Class IB in Pancreatic Cancer.
C. E. Edling, F. Selvaggi, R. Buus, T. Maffucci, P. Di Sebastiano, H. Friess, P. Innocenti, H. M. Kocher, and M. Falasca (2010)
Clin. Cancer Res. 16, 4928-4937
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-kinase-{delta} inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals.
S. E. M. Herman, A. L. Gordon, A. J. Wagner, N. A. Heerema, W. Zhao, J. M. Flynn, J. Jones, L. Andritsos, K. D. Puri, B. J. Lannutti, et al. (2010)
Blood 116, 2078-2088
   Abstract »    Full Text »    PDF »
Cancer-derived mutations in the regulatory subunit p85{alpha} of phosphoinositide 3-kinase function through the catalytic subunit p110{alpha}.
M. Sun, P. Hillmann, B. T. Hofmann, J. R. Hart, and P. K. Vogt (2010)
PNAS 107, 15547-15552
   Abstract »    Full Text »    PDF »
Activity of any class IA PI3K isoform can sustain cell proliferation and survival.
L. C. Foukas, I. M. Berenjeno, A. Gray, A. Khwaja, and B. Vanhaesebroeck (2010)
PNAS 107, 11381-11386
   Abstract »    Full Text »    PDF »
Disulfiram Treatment Facilitates Phosphoinositide 3-Kinase Inhibition in Human Breast Cancer Cells In vitro and In vivo.
H. Zhang, D. Chen, J. Ringler, W. Chen, Q. C. Cui, S. P. Ethier, Q. P. Dou, and G. Wu (2010)
Cancer Res. 70, 3996-4004
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase Pathway Activation in Phosphate and Tensin Homolog (PTEN)-deficient Prostate Cancer Cells Is Independent of Receptor Tyrosine Kinases and Mediated by the p110{beta} and p110{delta} Catalytic Subunits.
X. Jiang, S. Chen, J. M. Asara, and S. P. Balk (2010)
J. Biol. Chem. 285, 14980-14989
   Abstract »    Full Text »    PDF »
Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia.
S. Park, N. Chapuis, J. Tamburini, V. Bardet, P. Cornillet-Lefebvre, L. Willems, A. Green, P. Mayeux, C. Lacombe, and D. Bouscary (2010)
Haematologica 95, 819-828
   Abstract »    Full Text »    PDF »
Status of PI3K inhibition and biomarker development in cancer therapeutics.
B. Markman, F. Atzori, J. Perez-Garcia, J. Tabernero, and J. Baselga (2010)
Ann. Onc. 21, 683-691
   Abstract »    Full Text »    PDF »
Molecular Pharmacology and Antitumor Activity of PHT-427, a Novel Akt/Phosphatidylinositide-Dependent Protein Kinase 1 Pleckstrin Homology Domain Inhibitor.
E. J. Meuillet, S. Zuohe, R. Lemos, N. Ihle, J. Kingston, R. Watkins, S. A. Moses, S. Zhang, L. Du-Cuny, R. Herbst, et al. (2010)
Mol. Cancer Ther. 9, 706-717
   Abstract »    Full Text »    PDF »
The PI3K Pathway As Drug Target in Human Cancer.
K. D. Courtney, R. B. Corcoran, and J. A. Engelman (2010)
J. Clin. Oncol. 28, 1075-1083
   Abstract »    Full Text »    PDF »
Current Perspectives on Akt Akt-ivation and Akt-ions.
R. W. Matheny Jr. and M. L. Adamo (2009)
Experimental Biology and Medicine 234, 1264-1270
   Abstract »    Full Text »    PDF »
A frequent kinase domain mutation that changes the interaction between PI3K{alpha} and the membrane.
D. Mandelker, S. B. Gabelli, O. Schmidt-Kittler, J. Zhu, I. Cheong, C.-H. Huang, K. W. Kinzler, B. Vogelstein, and L. M. Amzel (2009)
PNAS 106, 16996-17001
   Abstract »    Full Text »    PDF »
Distinct roles for isoforms of the catalytic subunit of class-IA PI3K in the regulation of behaviour of murine embryonic stem cells.
E. Kingham and M. Welham (2009)
J. Cell Sci. 122, 2311-2321
   Abstract »    Full Text »    PDF »
Requirement of Phosphatidylinositol(3,4,5)Trisphosphate in Phosphatidylinositol 3-Kinase-Induced Oncogenic Transformation.
A. Denley, M. Gymnopoulos, S. Kang, C. Mitchell, and P. K. Vogt (2009)
Mol. Cancer Res. 7, 1132-1138
   Abstract »    Full Text »    PDF »
Specific function of phosphoinositide 3-kinase beta in the control of DNA replication.
M. Marques, A. Kumar, A. M. Poveda, S. Zuluaga, C. Hernandez, S. Jackson, P. Pasero, and A. C. Carrera (2009)
PNAS 106, 7525-7530
   Abstract »    Full Text »    PDF »
Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation.
H. B. Salvesen, S. L. Carter, M. Mannelqvist, A. Dutt, G. Getz, I. M. Stefansson, M. B. Raeder, M. L. Sos, I. B. Engelsen, J. Trovik, et al. (2009)
PNAS 106, 4834-4839
   Abstract »    Full Text »    PDF »
Inhibition of Class I Phosphoinositide 3-Kinase Activity Impairs Proliferation and Triggers Apoptosis in Acute Promyelocytic Leukemia without Affecting Atra-Induced Differentiation.
C. Billottet, L. Banerjee, B. Vanhaesebroeck, and A. Khwaja (2009)
Cancer Res. 69, 1027-1036
   Abstract »    Full Text »    PDF »
Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy.
N. T. Ihle and G. Powis (2009)
Mol. Cancer Ther. 8, 1-9
   Abstract »    Full Text »    PDF »
Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages.
E. A. Papakonstanti, O. Zwaenepoel, A. Bilancio, E. Burns, G. E. Nock, B. Houseman, K. Shokat, A. J. Ridley, and B. Vanhaesebroeck (2008)
J. Cell Sci. 121, 4124-4133
   Abstract »    Full Text »    PDF »
Leukemic challenge unmasks a requirement for PI3K{delta} in NK cell-mediated tumor surveillance.
E. Zebedin, O. Simma, C. Schuster, E. M. Putz, S. Fajmann, W. Warsch, E. Eckelhart, D. Stoiber, E. Weisz, J. A. Schmid, et al. (2008)
Blood 112, 4655-4664
   Abstract »    Full Text »    PDF »
PIK3CA Cooperates with Other Phosphatidylinositol 3'-Kinase Pathway Mutations to Effect Oncogenic Transformation.
K. Oda, J. Okada, L. Timmerman, P. Rodriguez-Viciana, D. Stokoe, K. Shoji, Y. Taketani, H. Kuramoto, Z. A. Knight, K. M. Shokat, et al. (2008)
Cancer Res. 68, 8127-8136
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase p110{beta} Activity: Key Role in Metabolism and Mammary Gland Cancer but Not Development.
E. Ciraolo, M. Iezzi, R. Marone, S. Marengo, C. Curcio, C. Costa, O. Azzolino, C. Gonella, C. Rubinetto, H. Wu, et al. (2008)
Science Signaling 1, ra3
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinases p110{alpha} and p110{beta} Regulate Cell Cycle Entry, Exhibiting Distinct Activation Kinetics in G1 Phase.
M. Marques, A. Kumar, I. Cortes, A. Gonzalez-Garcia, C. Hernandez, M. C. Moreno-Ortiz, and A. C. Carrera (2008)
Mol. Cell. Biol. 28, 2803-2814
   Abstract »    Full Text »    PDF »
Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells.
E. Weisberg, L. Banerji, R. D. Wright, R. Barrett, A. Ray, D. Moreno, L. Catley, J. Jiang, E. Hall-Meyers, M. Sauveur-Michel, et al. (2008)
Blood 111, 3723-3734
   Abstract »    Full Text »    PDF »
Phosphatidylinositol-3-Kinase-Atypical Protein Kinase C Signaling Is Required for Wnt Attraction and Anterior-Posterior Axon Guidance.
A. M. Wolf, A. I. Lyuksyutova, A. G. Fenstermaker, B. Shafer, C. G. Lo, and Y. Zou (2008)
J. Neurosci. 28, 3456-3467
   Abstract »    Full Text »    PDF »
Targeting the Phosphoinositide 3-Kinase Isoform p110{delta} Impairs Growth and Survival in Neuroblastoma Cells.
D. Boller, A. Schramm, K. T. Doepfner, T. Shalaby, A. O. von Bueren, A. Eggert, M. A. Grotzer, and A. Arcaro (2008)
Clin. Cancer Res. 14, 1172-1181
   Abstract »    Full Text »    PDF »
Malignant astrocytic glioma: genetics, biology, and paths to treatment.
F. B. Furnari, T. Fenton, R. M. Bachoo, A. Mukasa, J. M. Stommel, A. Stegh, W. C. Hahn, K. L. Ligon, D. N. Louis, C. Brennan, et al. (2007)
Genes & Dev. 21, 2683-2710
   Abstract »    Full Text »    PDF »
Negative feedback regulation of Rac in leukocytes from mice expressing a constitutively active phosphatidylinositol 3-kinase {gamma}.
C. Costa, L. Barberis, C. Ambrogio, A. D. Manazza, E. Patrucco, O. Azzolino, P. O. Neilsen, E. Ciraolo, F. Altruda, G. D. Prestwich, et al. (2007)
PNAS 104, 14354-14359
   Abstract »    Full Text »    PDF »
Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern.
C. Hafner, E. Lopez-Knowles, N. M. Luis, A. Toll, E. Baselga, A. Fernandez-Casado, S. Hernandez, A. Ribe, T. Mentzel, R. Stoehr, et al. (2007)
PNAS 104, 13450-13454
   Abstract »    Full Text »    PDF »
Pharmacologic Characterization of a Potent Inhibitor of Class I Phosphatidylinositide 3-Kinases.
F. I. Raynaud, S. Eccles, P. A. Clarke, A. Hayes, B. Nutley, S. Alix, A. Henley, F. Di-Stefano, Z. Ahmad, S. Guillard, et al. (2007)
Cancer Res. 67, 5840-5850
   Abstract »    Full Text »    PDF »
Practicalities of drugging the phosphatidylinositol-3-kinase/akt cell survival signaling pathway..
G. Powis, N. Ihle, and D. L. Kirkpatrick (2006)
Clin. Cancer Res. 12, 2964-2966
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882