Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 103 (51): 19564-19568

Copyright © 2006 by the National Academy of Sciences.


TRP channel activation by reversible covalent modification

Andrew Hinman, Huai-hu Chuang*, Diana M. Bautista, and David Julius{dagger}

Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158

Contributed by David Julius, October 30, 2006

Received for publication October 4, 2006.

Abstract: Allyl isothiocyanate, the pungent principle of wasabi and other mustard oils, produces pain by activating TRPA1, an excitatory ion channel on sensory nerve endings. Isothiocyanates are membrane-permeable electrophiles that form adducts with thiols and primary amines, suggesting that covalent modification, rather than classical lock-and-key binding, accounts for their agonist properties. Indeed, we show that thiol reactive compounds of diverse structure activate TRPA1 in a manner that relies on covalent modification of cysteine residues within the cytoplasmic N terminus of the channel. These findings suggest an unusual paradigm whereby natural products activate a receptor through direct, reversible, and covalent protein modification.

Key Words: chemical modification • irritants • natural products • pain

Author contributions: A.H., H.-h.C., D.M.B., and D.J. designed research; A.H., H.-h.C., and D.M.B. performed research; A.H., H.-h.C., D.M.B., and D.J. analyzed data; and A.H. and D.J. wrote the paper.

*Present address: Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853.

The authors declare no conflict of interest.

This article contains supporting information online at

{dagger}To whom correspondence should be addressed. E-mail: julius{at}

© 2006 by The National Academy of Sciences of the USA

Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori.
A. Sato, T. Sokabe, M. Kashio, Y. Yasukochi, M. Tominaga, and K. Shiomi (2014)
PNAS 111, E1249-E1255
   Abstract »    Full Text »    PDF »
Antitussive Drugs--Past, Present, and Future.
P. V. Dicpinigaitis, A. H. Morice, S. S. Birring, L. McGarvey, J. A. Smith, B. J. Canning, and C. P. Page (2014)
Pharmacol. Rev. 66, 468-512
   Abstract »    Full Text »    PDF »
Heat and Noxious Chemical Sensor, Chicken TRPA1, as a Target of Bird Repellents and Identification of Its Structural Determinants by Multispecies Functional Comparison.
S. Saito, N. Banzawa, N. Fukuta, C. T. Saito, K. Takahashi, T. Imagawa, T. Ohta, and M. Tominaga (2014)
Mol. Biol. Evol. 31, 708-722
   Abstract »    Full Text »    PDF »
Transnitrosylation Directs TRPA1 Selectivity in N-Nitrosamine Activators.
D. Kozai, Y. Kabasawa, M. Ebert, S. Kiyonaka, Firman, Y. Otani, T. Numata, N. Takahashi, Y. Mori, and T. Ohwada (2014)
Mol. Pharmacol. 85, 175-185
   Abstract »    Full Text »    PDF »
The TFOS International Workshop on Contact Lens Discomfort: Report of the Subcommittee on Neurobiology.
F. Stapleton, C. Marfurt, B. Golebiowski, M. Rosenblatt, D. Bereiter, C. Begley, D. Dartt, J. Gallar, C. Belmonte, P. Hamrah, et al. (2013)
Invest. Ophthalmol. Vis. Sci. 54, TFOS71-TFOS97
   Abstract »    Full Text »    PDF »
Mechanisms of Transient Receptor Potential Vanilloid 1 Activation and Sensitization by Allyl Isothiocyanate.
M. Gees, Y. A. Alpizar, B. Boonen, A. Sanchez, W. Everaerts, A. Segal, F. Xue, A. Janssens, G. Owsianik, B. Nilius, et al. (2013)
Mol. Pharmacol. 84, 325-334
   Abstract »    Full Text »    PDF »
The Molecular Basis for Species-specific Activation of Human TRPA1 Protein by Protons Involves Poorly Conserved Residues within Transmembrane Domains 5 and 6.
J. de la Roche, M. J. Eberhardt, A. B. Klinger, N. Stanslowsky, F. Wegner, W. Koppert, P. W. Reeh, A. Lampert, M. J. M. Fischer, and A. Leffler (2013)
J. Biol. Chem. 288, 20280-20292
   Abstract »    Full Text »    PDF »
Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels.
L. Nesuashvili, S. H. Hadley, P. K. Bahia, and T. E. Taylor-Clark (2013)
Mol. Pharmacol. 83, 1007-1019
   Abstract »    Full Text »    PDF »
Benzoquinone Reveals a Cysteine-Dependent Desensitization Mechanism of TRPA1.
Y. Ibarra and N. T. Blair (2013)
Mol. Pharmacol. 83, 1120-1132
   Abstract »    Full Text »    PDF »
Stimulation of human TRPA1 channels by clinical concentrations of the antirheumatic drug auranofin.
N. Hatano, H. Suzuki, Y. Muraki, and K. Muraki (2013)
Am J Physiol Cell Physiol 304, C354-C361
   Abstract »    Full Text »    PDF »
Apomorphine Is a Bimodal Modulator of TRPA1 Channels.
A. Schulze, B. Oehler, N. Urban, M. Schaefer, and K. Hill (2013)
Mol. Pharmacol. 83, 542-551
   Abstract »    Full Text »    PDF »
Isothiocyanates from Wasabia japonica Activate Transient Receptor Potential Ankyrin 1 Channel.
K. Uchida, Y. Miura, M. Nagai, and M. Tominaga (2012)
Chem Senses 37, 809-818
   Abstract »    Full Text »    PDF »
Sensory and Signaling Mechanisms of Bradykinin, Eicosanoids, Platelet-Activating Factor, and Nitric Oxide in Peripheral Nociceptors.
G. Petho and P. W. Reeh (2012)
Physiol Rev 92, 1699-1775
   Abstract »    Full Text »    PDF »
Analysis of Transient Receptor Potential Ankyrin 1 (TRPA1) in Frogs and Lizards Illuminates Both Nociceptive Heat and Chemical Sensitivities and Coexpression with TRP Vanilloid 1 (TRPV1) in Ancestral Vertebrates.
S. Saito, K. Nakatsuka, K. Takahashi, N. Fukuta, T. Imagawa, T. Ohta, and M. Tominaga (2012)
J. Biol. Chem. 287, 30743-30754
   Abstract »    Full Text »    PDF »
Methylglyoxal Activates Nociceptors through Transient Receptor Potential Channel A1 (TRPA1): A POSSIBLE MECHANISM OF METABOLIC NEUROPATHIES.
M. J. Eberhardt, M. R. Filipovic, A. Leffler, J. de la Roche, K. Kistner, M. J. Fischer, T. Fleming, K. Zimmermann, I. Ivanovic-Burmazovic, P. P. Nawroth, et al. (2012)
J. Biol. Chem. 287, 28291-28306
   Abstract »    Full Text »    PDF »
Differential Expression and Functionality of TRPA1 Protein Genetic Variants in Conditions of Thermal Stimulation.
D. May, J. Baastrup, M. R. Nientit, A. Binder, M. Schunke, R. Baron, and I. Cascorbi (2012)
J. Biol. Chem. 287, 27087-27094
   Abstract »    Full Text »    PDF »
Identification of in Vivo Disulfide Conformation of TRPA1 Ion Channel.
L. Wang, T. L. Cvetkov, M. R. Chance, and V. Y. Moiseenkova-Bell (2012)
J. Biol. Chem. 287, 6169-6176
   Abstract »    Full Text »    PDF »
The 'headache tree' via umbellulone and TRPA1 activates the trigeminovascular system.
R. Nassini, S. Materazzi, J. Vriens, J. Prenen, S. Benemei, G. De Siena, G. la Marca, E. Andre, D. Preti, C. Avonto, et al. (2012)
Brain 135, 376-390
   Abstract »    Full Text »    PDF »
Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli.
J. F. Cordero-Morales, E. O. Gracheva, and D. Julius (2011)
PNAS 108, E1184-E1191
   Abstract »    Full Text »    PDF »
Molecular Architecture and Subunit Organization of TRPA1 Ion Channel Revealed by Electron Microscopy.
T. L. Cvetkov, K. W. Huynh, M. R. Cohen, and V. Y. Moiseenkova-Bell (2011)
J. Biol. Chem. 286, 38168-38176
   Abstract »    Full Text »    PDF »
Proteins as binding targets of isothiocyanates in cancer prevention.
L. Mi, A. J. Di Pasqua, and F.-L. Chung (2011)
Carcinogenesis 32, 1405-1413
   Abstract »    Full Text »    PDF »
Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception.
M. Raisinghani, L. Zhong, J. A. Jeffry, M. Bishnoi, R. M. Pabbidi, F. Pimentel, D.-S. Cao, M. Steven Evans, and L. S. Premkumar (2011)
Am J Physiol Cell Physiol 301, C587-C600
   Abstract »    Full Text »    PDF »
SNO-ing at the Nociceptive Synapse?.
I. Tegeder, R. Scheving, I. Wittig, and G. Geisslinger (2011)
Pharmacol. Rev. 63, 366-389
   Abstract »    Full Text »    PDF »
A TRPA1-dependent mechanism for the pungent sensation of weak acids.
Y. Y. Wang, R. B. Chang, S. D. Allgood, W. L. Silver, and E. R. Liman (2011)
J. Gen. Physiol. 137, 493-505
   Abstract »    Full Text »    PDF »
Weakly acidic, but strongly irritating: TRPA1 and the activation of nociceptors by cytoplasmic acidification.
P. A. Garrity (2011)
J. Gen. Physiol. 137, 489-491
   Full Text »    PDF »
Direct Activation of Human Phospholipase C by Its Well Known Inhibitor U73122.
R. R. Klein, D. M. Bourdon, C. L. Costales, C. D. Wagner, W. L. White, J. D. Williams, S. N. Hicks, J. Sondek, and D. R. Thakker (2011)
J. Biol. Chem. 286, 12407-12416
   Abstract »    Full Text »    PDF »
4-Oxo-2-nonenal (4-ONE): Evidence of Transient Receptor Potential Ankyrin 1-Dependent and -Independent Nociceptive and Vasoactive Responses In Vivo.
R. Graepel, E. S. Fernandes, A. A. Aubdool, D. A. Andersson, S. Bevan, and S. D. Brain (2011)
J. Pharmacol. Exp. Ther. 337, 117-124
   Abstract »    Full Text »    PDF »
Unusual Pungency from Extra-Virgin Olive Oil Is Attributable to Restricted Spatial Expression of the Receptor of Oleocanthal.
C. Peyrot des Gachons, K. Uchida, B. Bryant, A. Shima, J. B. Sperry, L. Dankulich-Nagrudny, M. Tominaga, A. B. Smith III, G. K. Beauchamp, and P. A. S. Breslin (2011)
J. Neurosci. 31, 999-1009
   Abstract »    Full Text »    PDF »
Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents.
R. Nassini, S. Materazzi, E. Andre, L. Sartiani, G. Aldini, M. Trevisani, C. Carnini, D. Massi, P. Pedretti, M. Carini, et al. (2010)
FASEB J 24, 4904-4916
   Abstract »    Full Text »    PDF »
TRPA1 Contributes to Cold Hypersensitivity.
D. del Camino, S. Murphy, M. Heiry, L. B. Barrett, T. J. Earley, C. A. Cook, M. J. Petrus, M. Zhao, M. D'Amours, N. Deering, et al. (2010)
J. Neurosci. 30, 15165-15174
   Abstract »    Full Text »    PDF »
The General Anesthetic Propofol Excites Nociceptors by Activating TRPV1 and TRPA1 Rather than GABAA Receptors.
M. J. M. Fischer, A. Leffler, F. Niedermirtl, K. Kistner, M. Eberhardt, P. W. Reeh, and C. Nau (2010)
J. Biol. Chem. 285, 34781-34792
   Abstract »    Full Text »    PDF »
Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes.
K. Kohno, T. Sokabe, M. Tominaga, and T. Kadowaki (2010)
J. Neurosci. 30, 12219-12229
   Abstract »    Full Text »    PDF »
International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family.
L.-J. Wu, T.-B. Sweet, and D. E. Clapham (2010)
Pharmacol. Rev. 62, 381-404
   Abstract »    Full Text »    PDF »
Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo.
G. Pozsgai, J. V. Bodkin, R. Graepel, S. Bevan, D. A. Andersson, and S. D. Brain (2010)
Cardiovasc Res 87, 760-768
   Abstract »    Full Text »    PDF »
Infrared Snake Eyes: TRPA1 and the Thermal Sensitivity of the Snake Pit Organ.
V. C. Panzano, K. Kang, and P. A. Garrity (2010)
Science Signaling 3, pe22
   Abstract »    Full Text »    PDF »
Nitro-Oleic Acid Inhibits Firing and Activates TRPV1- and TRPA1-Mediated Inward Currents in Dorsal Root Ganglion Neurons from Adult Male Rats.
A. Sculptoreanu, F. A. Kullmann, D. E. Artim, F. A. Bazley, F. Schopfer, S. Woodcock, B. A. Freeman, and W. C. de Groat (2010)
J. Pharmacol. Exp. Ther. 333, 883-895
   Abstract »    Full Text »    PDF »
Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation.
T. G. Banke, S. R. Chaplan, and A. D. Wickenden (2010)
Am J Physiol Cell Physiol 298, C1457-C1468
   Abstract »    Full Text »    PDF »
Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels.
T. E. Taylor-Clark and B. J. Undem (2010)
J. Physiol. 588, 423-433
   Abstract »    Full Text »    PDF »
Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification.
H.-h. Chuang and S. Lin (2009)
PNAS 106, 20097-20102
   Abstract »    Full Text »    PDF »
Direct Modification of the Proinflammatory Cytokine Macrophage Migration Inhibitory Factor by Dietary Isothiocyanates.
K. K. Brown, F. H. Blaikie, R. A. J. Smith, J. D. A. Tyndall, H. Lue, J. Bernhagen, C. C. Winterbourn, and M. B. Hampton (2009)
J. Biol. Chem. 284, 32425-32433
   Abstract »    Full Text »    PDF »
Transduction of Redox Signaling by Electrophile-Protein Reactions.
T. K. Rudolph and B. A. Freeman (2009)
Science Signaling 2, re7
   Abstract »    Full Text »    PDF »
Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+.
D. A. Andersson, C. Gentry, S. Moss, and S. Bevan (2009)
PNAS 106, 8374-8379
   Abstract »    Full Text »    PDF »
Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.
B. F. Bessac, M. Sivula, C. A. von Hehn, A. I. Caceres, J. Escalera, and S.-E. Jordt (2009)
FASEB J 23, 1102-1114
   Abstract »    Full Text »    PDF »
Nitrooleic Acid, an Endogenous Product of Nitrative Stress, Activates Nociceptive Sensory Nerves via the Direct Activation of TRPA1.
T. E. Taylor-Clark, S. Ghatta, W. Bettner, and B. J. Undem (2009)
Mol. Pharmacol. 75, 820-829
   Abstract »    Full Text »    PDF »
Divide and Conquer: High Resolution Structural Information on TRP Channel Fragments.
R. Gaudet (2009)
J. Gen. Physiol. 133, 231-237
   Full Text »    PDF »
Polymodal Ligand Sensitivity of TRPA1 and Its Modes of Interactions.
S. Bang and S. W. Hwang (2009)
J. Gen. Physiol. 133, 257-262
   Full Text »    PDF »
Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation.
K. Y. Kwan and D. P. Corey (2009)
J. Gen. Physiol. 133, 251-256
   Full Text »    PDF »
Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4.
H. Hu, J. Grandl, M. Bandell, M. Petrus, and A. Patapoutian (2009)
PNAS 106, 1626-1631
   Abstract »    Full Text »    PDF »
TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus.
S. Yu and A. Ouyang (2009)
Am J Physiol Gastrointest Liver Physiol 296, G255-G265
   Abstract »    Full Text »    PDF »
TRPA1 acts as a cold sensor in vitro and in vivo.
Y. Karashima, K. Talavera, W. Everaerts, A. Janssens, K. Y. Kwan, R. Vennekens, B. Nilius, and T. Voets (2009)
PNAS 106, 1273-1278
   Abstract »    Full Text »    PDF »
TRPV1 Is Activated by Both Acidic and Basic pH.
A. Dhaka, V. Uzzell, A. E. Dubin, J. Mathur, M. Petrus, M. Bandell, and A. Patapoutian (2009)
J. Neurosci. 29, 153-158
   Abstract »    Full Text »    PDF »
Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control.
B. F. Bessac and S.-E. Jordt (2008)
Physiology 23, 360-370
   Abstract »    Full Text »    PDF »
Functional Proteomics of Arabidopsis thaliana Guard Cells Uncovers New Stomatal Signaling Pathways.
Z. Zhao, W. Zhang, B. A. Stanley, and S. M. Assmann (2008)
PLANT CELL 20, 3210-3226
   Abstract »    Full Text »    PDF »
The Nociceptor Ion Channel TRPA1 Is Potentiated and Inactivated by Permeating Calcium Ions.
Y. Y. Wang, R. B. Chang, H. N. Waters, D. D. McKemy, and E. R. Liman (2008)
J. Biol. Chem. 283, 32691-32703
   Abstract »    Full Text »    PDF »
Caffeine activates mouse TRPA1 channels but suppresses human TRPA1 channels.
K. Nagatomo and Y. Kubo (2008)
PNAS 105, 17373-17378
   Abstract »    Full Text »    PDF »
Drosophila Painless Is a Ca2+-Requiring Channel Activated by Noxious Heat.
T. Sokabe, S. Tsujiuchi, T. Kadowaki, and M. Tominaga (2008)
J. Neurosci. 28, 9929-9938
   Abstract »    Full Text »    PDF »
Identification of Transmembrane Domain 5 as a Critical Molecular Determinant of Menthol Sensitivity in Mammalian TRPA1 Channels.
B. Xiao, A. E. Dubin, B. Bursulaya, V. Viswanath, T. J. Jegla, and A. Patapoutian (2008)
J. Neurosci. 28, 9640-9651
   Abstract »    Full Text »    PDF »
TRPA1 Mediates the Noxious Effects of Natural Sesquiterpene Deterrents.
J. Escalera, C. A. von Hehn, B. F. Bessac, M. Sivula, and S.-E. Jordt (2008)
J. Biol. Chem. 283, 24136-24144
   Abstract »    Full Text »    PDF »
Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.
S. Materazzi, R. Nassini, E. Andre, B. Campi, S. Amadesi, M. Trevisani, N. W. Bunnett, R. Patacchini, and P. Geppetti (2008)
PNAS 105, 12045-12050
   Abstract »    Full Text »    PDF »
TRP channels entering the structural era.
R. Gaudet (2008)
J. Physiol. 586, 3565-3575
   Abstract »    Full Text »    PDF »
Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal.
T. E. Taylor-Clark, M. A. McAlexander, C. Nassenstein, S. A. Sheardown, S. Wilson, J. Thornton, M. J. Carr, and B. J. Undem (2008)
J. Physiol. 586, 3447-3459
   Abstract »    Full Text »    PDF »
Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate.
D. Kim, E. J. Cavanaugh, and D. Simkin (2008)
Am J Physiol Cell Physiol 295, C92-C99
   Abstract »    Full Text »    PDF »
General anesthetics activate a nociceptive ion channel to enhance pain and inflammation.
J. A. Matta, P. M. Cornett, R. L. Miyares, K. Abe, N. Sahibzada, and G. P. Ahern (2008)
PNAS 105, 8784-8789
   Abstract »    Full Text »    PDF »
Plant-Derived Cannabinoids Modulate the Activity of Transient Receptor Potential Channels of Ankyrin Type-1 and Melastatin Type-8.
L. De Petrocellis, V. Vellani, A. Schiano-Moriello, P. Marini, P. C. Magherini, P. Orlando, and V. Di Marzo (2008)
J. Pharmacol. Exp. Ther. 325, 1007-1015
   Abstract »    Full Text »    PDF »
Molecular Determinants of Species-Specific Activation or Blockade of TRPA1 Channels.
J. Chen, X.-F. Zhang, M. E. Kort, J. R. Huth, C. Sun, L. J. Miesbauer, S. C. Cassar, T. Neelands, V. E. Scott, R. B. Moreland, et al. (2008)
J. Neurosci. 28, 5063-5071
   Abstract »    Full Text »    PDF »
Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain.
S. Wang, Y. Dai, T. Fukuoka, H. Yamanaka, K. Kobayashi, K. Obata, X. Cui, M. Tominaga, and K. Noguchi (2008)
Brain 131, 1241-1251
   Abstract »    Full Text »    PDF »
Activation of TRPA1 by Farnesyl Thiosalicylic Acid.
M. Maher, H. Ao, T. Banke, N. Nasser, N.-T. Wu, J. G. Breitenbucher, S. R. Chaplan, and A. D. Wickenden (2008)
Mol. Pharmacol. 73, 1225-1234
   Abstract »    Full Text »    PDF »
Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress.
D. A. Andersson, C. Gentry, S. Moss, and S. Bevan (2008)
J. Neurosci. 28, 2485-2494
   Abstract »    Full Text »    PDF »
Prostaglandin-Induced Activation of Nociceptive Neurons via Direct Interaction with Transient Receptor Potential A1 (TRPA1).
T. E. Taylor-Clark, B. J. Undem, D. W. MacGlashan Jr., S. Ghatta, M. J. Carr, and M. A. McAlexander (2008)
Mol. Pharmacol. 73, 274-281
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Channels in Sensory Neurons Are Targets of the Antimycotic Agent Clotrimazole.
V. Meseguer, Y. Karashima, K. Talavera, D. D'Hoedt, T. Donovan-Rodriguez, F. Viana, B. Nilius, and T. Voets (2008)
J. Neurosci. 28, 576-586
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Subtype-Specific Inhibition of Neuronal T-Type Calcium Channels by Ascorbate.
M. T. Nelson, P. M. Joksovic, P. Su, H.-W. Kang, A. Van Deusen, J. P. Baumgart, L. S. David, T. P. Snutch, P. Q. Barrett, J.-H. Lee, et al. (2007)
J. Neurosci. 27, 12577-12583
   Abstract »    Full Text »    PDF »
Hydrogen sulfide mediates the vasoactivity of garlic.
G. A. Benavides, G. L. Squadrito, R. W. Mills, H. D. Patel, T. S. Isbell, R. P. Patel, V. M. Darley-Usmar, J. E. Doeller, and D. W. Kraus (2007)
PNAS 104, 17977-17982
   Abstract »    Full Text »    PDF »
L. M. S. Baker, P. R. S. Baker, F. Golin-Bisello, F. J. Schopfer, M. Fink, S. R. Woodcock, B. P. Branchaud, R. Radi, and B. A. Freeman (2007)
J. Biol. Chem. 282, 31085-31093
   Abstract »    Full Text »    PDF »
An Ion Channel Essential for Sensing Chemical Damage.
L. J. Macpherson, B. Xiao, K. Y. Kwan, M. J. Petrus, A. E. Dubin, S. Hwang, B. Cravatt, D. P. Corey, and A. Patapoutian (2007)
J. Neurosci. 27, 11412-11415
   Abstract »    Full Text »    PDF »
Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1.
Y. Karashima, N. Damann, J. Prenen, K. Talavera, A. Segal, T. Voets, and B. Nilius (2007)
J. Neurosci. 27, 9874-9884
   Abstract »    Full Text »    PDF »
Proximity-accelerated Chemical Coupling Reaction in the Benzodiazepine-binding Site of {gamma}-Aminobutyric Acid Type A Receptors: SUPERPOSITION OF DIFFERENT ALLOSTERIC MODULATORS.
K. R. Tan, A. Gonthier, R. Baur, M. Ernst, M. Goeldner, and E. Sigel (2007)
J. Biol. Chem. 282, 26316-26325
   Abstract »    Full Text »    PDF »
Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization.
A. N. Akopian, N. B. Ruparel, N. A. Jeske, and K. M. Hargreaves (2007)
J. Physiol. 583, 175-193
   Abstract »    Full Text »    PDF »
4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1.
M. Trevisani, J. Siemens, S. Materazzi, D. M. Bautista, R. Nassini, B. Campi, N. Imamachi, E. Andre, R. Patacchini, G. S. Cottrell, et al. (2007)
PNAS 104, 13519-13524
   Abstract »    Full Text »    PDF »
TRPA1 mediates formalin-induced pain.
C. R. McNamara, J. Mandel-Brehm, D. M. Bautista, J. Siemens, K. L. Deranian, M. Zhao, N. J. Hayward, J. A. Chong, D. Julius, M. M. Moran, et al. (2007)
PNAS 104, 13525-13530
   Abstract »    Full Text »    PDF »
Requirement of a Soluble Intracellular Factor for Activation of Transient Receptor Potential A1 by Pungent Chemicals: Role of Inorganic Polyphosphates.
D. Kim and E. J. Cavanaugh (2007)
J. Neurosci. 27, 6500-6509
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Channel A1 Is Directly Gated by Calcium Ions.
J. F. Doerner, G. Gisselmann, H. Hatt, and C. H. Wetzel (2007)
J. Biol. Chem. 282, 13180-13189
   Abstract »    Full Text »    PDF »
Activation of TRPA1 Channels by the Fatty Acid Amide Hydrolase Inhibitor 3'-Carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597).
W. Niforatos, X.-F. Zhang, M. R. Lake, K. A. Walter, T. Neelands, T. F. Holzman, V. E. Scott, C. R. Faltynek, R. B. Moreland, and J. Chen (2007)
Mol. Pharmacol. 71, 1209-1216
   Abstract »    Full Text »    PDF »
TRPA1 Is Differentially Modulated by the Amphipathic Molecules Trinitrophenol and Chlorpromazine.
K. Hill and M. Schaefer (2007)
J. Biol. Chem. 282, 7145-7153
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882