Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 103 (8): 2886-2891

Copyright © 2006 by the National Academy of Sciences.


A voltage-driven switch for ion-independent signaling by ether-à-go-go K+ channels

Andrew P. Hegle, Daniel D. Marble, and Gisela F. Wilson*

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048

Edited by Richard L. Huganir, Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 23, 2005

Received for publication July 13, 2005.

Abstract: Voltage-gated channels maintain cellular resting potentials and generate neuronal action potentials by regulating ion flux. Here, we show that Ether-à-go-go (EAG) K+ channels also regulate intracellular signaling pathways by a mechanism that is independent of ion flux and depends on the position of the voltage sensor. Regulation of intracellular signaling was initially inferred from changes in proliferation. Specifically, transfection of NIH 3T3 fibroblasts or C2C12 myoblasts with either wild-type or nonconducting (F456A) eag resulted in dramatic increases in cell density and BrdUrd incorporation over vector- and Shaker-transfected controls. The effect of EAG was independent of serum and unaffected by changes in extracellular calcium. Inhibitors of p38 mitogen-activated protein (MAP) kinases, but not p44/42 MAP kinases (extracellular signal-regulated kinases), blocked the proliferation induced by nonconducting EAG in serum-free media, and EAG increased p38 MAP kinase activity. Importantly, mutations that increased the proportion of channels in the open state inhibited EAG-induced proliferation, and this effect could not be explained by changes in the surface expression of EAG. These results indicate that channel conformation is a switch for the signaling activity of EAG and suggest an alternative mechanism for linking channel activity to the activity of intracellular messengers, a role that previously has been ascribed only to channels that regulate calcium influx.

Key Words: intracellular messenger • mitogen-activated protein kinase • neuromodulation • proliferation • gating

Author contributions: A.P.H. and G.F.W. designed research; A.P.H., D.D.M., and G.F.W. performed research; A.P.H. and G.F.W. analyzed data; and A.P.H. and G.F.W. wrote the paper.

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

*To whom correspondence should be addressed. E-mail: wilsongf{at}

© 2006 by The National Academy of Sciences of the USA

Potassium channels in cell cycle and cell proliferation.
D. Urrego, A. P. Tomczak, F. Zahed, W. Stuhmer, and L. A. Pardo (2014)
Phil Trans R Soc B 369, 20130094
   Abstract »    Full Text »    PDF »
Natural antisense transcripts regulate the neuronal stress response and excitability.
X. Zheng, V. Valakh, A. DiAntonio, and Y. Ben-Shahar (2014)
eLife Sci 3, e01849
   Abstract »    Full Text »    PDF »
Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice.
R. Ufartes, T. Schneider, L. S. Mortensen, C. de Juan Romero, K. Hentrich, H. Knoetgen, V. Beilinson, W. Moebius, V. Tarabykin, F. Alves, et al. (2013)
Hum. Mol. Genet. 22, 2247-2262
   Abstract »    Full Text »    PDF »
Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels.
Y. Zhang, M. R. Brown, C. Hyland, Y. Chen, J. Kronengold, M. R. Fleming, A. B. Kohn, L. L. Moroz, and L. K. Kaczmarek (2012)
J. Neurosci. 32, 15318-15327
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate and human ether-a'-go-go-related gene potassium channels modulate migration in human anaplastic thyroid cancer cells.
M. Y. Asghar, T. Viitanen, K. Kemppainen, and K. Tornquist (2012)
Endocr. Relat. Cancer 19, 667-680
   Abstract »    Full Text »    PDF »
Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics.
X. Huang, A. M. Dubuc, R. Hashizume, J. Berg, Y. He, J. Wang, C. Chiang, M. K. Cooper, P. A. Northcott, M. D. Taylor, et al. (2012)
Genes & Dev. 26, 1780-1796
   Abstract »    Full Text »    PDF »
hERG K+ Channels: Structure, Function, and Clinical Significance.
J. I. Vandenberg, M. D. Perry, M. J. Perrin, S. A. Mann, Y. Ke, and A. P. Hill (2012)
Physiol Rev 92, 1393-1478
   Abstract »    Full Text »    PDF »
Contribution of EAG to excitability and potassium currents in Drosophila larval motoneurons.
S. Srinivasan, K. Lance, and R. B. Levine (2012)
J Neurophysiol 107, 2660-2671
   Abstract »    Full Text »    PDF »
Kv1.3 Channels Can Modulate Cell Proliferation During Phenotypic Switch by an Ion-Flux Independent Mechanism.
P. Cidad, L. Jimenez-Perez, D. Garcia-Arribas, E. Miguel-Velado, S. Tajada, C. Ruiz-McDavitt, J. R. Lopez-Lopez, and M. T. Perez-Garcia (2012)
Arterioscler Thromb Vasc Biol 32, 1299-1307
   Abstract »    Full Text »    PDF »
Protons and Ca2+: Ionic Allies in Tumor Progression?.
M. Glitsch (2011)
Physiology 26, 252-265
   Abstract »    Full Text »    PDF »
Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer.
A. Becchetti (2011)
Am J Physiol Cell Physiol 301, C255-C265
   Abstract »    Full Text »    PDF »
Calcium-activated K+ channels increase cell proliferation independent of K+ conductance.
J. E. Millership, D. C. Devor, K. L. Hamilton, C. M. Balut, J. I. E. Bruce, and I. M. Fearon (2011)
Am J Physiol Cell Physiol 300, C792-C802
   Abstract »    Full Text »    PDF »
Intracellular Regions of the Eag Potassium Channel Play a Critical Role in Generation of Voltage-dependent Currents.
Y. Li, X. Liu, Y. Wu, Z. Xu, H. Li, L. C. Griffith, and Y. Zhou (2011)
J. Biol. Chem. 286, 1389-1399
   Abstract »    Full Text »    PDF »
Short Communication: Genetic Ablation of L-Type Ca2+ Channels Abolishes Depolarization-Induced Ca2+ Release in Arterial Smooth Muscle.
M. Fernandez-Tenorio, P. Gonzalez-Rodriguez, C. Porras, A. Castellano, S. Moosmang, F. Hofmann, J. Urena, and J. Lopez-Barneo (2010)
Circ. Res. 106, 1285-1289
   Abstract »    Full Text »    PDF »
Long-Lasting Synaptic Potentiation Induced by Depolarization Under Conditions That Eliminate Detectable Ca2+ Signals.
F. D. Reyes and E. T. Walters (2010)
J Neurophysiol 103, 1283-1294
   Abstract »    Full Text »    PDF »
Long-Lasting Hyperexcitability Induced by Depolarization in the Absence of Detectable Ca2+ Signals.
K. K. Kunjilwar, H. M. Fishman, D. J. Englot, R. G. O'Neil, and E. T. Walters (2009)
J Neurophysiol 101, 1351-1360
   Abstract »    Full Text »    PDF »
Eag1 Expression Interferes with Hypoxia Homeostasis and Induces Angiogenesis in Tumors.
B. R. Downie, A. Sanchez, H. Knotgen, C. Contreras-Jurado, M. Gymnopoulos, C. Weber, W. Stuhmer, and L. A. Pardo (2008)
J. Biol. Chem. 283, 36234-36240
   Abstract »    Full Text »    PDF »
CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling.
D. G. Wheeler, C. F. Barrett, R. D. Groth, P. Safa, and R. W. Tsien (2008)
J. Cell Biol. 183, 849-863
   Abstract »    Full Text »    PDF »
scn1bb, a Zebrafish Ortholog of SCN1B Expressed in Excitable and Nonexcitable Cells, Affects Motor Neuron Axon Morphology and Touch Sensitivity.
A. J. Fein, M. A. Wright, E. A. Slat, A. B. Ribera, and L. L. Isom (2008)
J. Neurosci. 28, 12510-12522
   Abstract »    Full Text »    PDF »
A Comment on Ion Channels as Pharmacological Targets in Oncology.
A. Becchetti and A. Arcangeli (2008)
J. Gen. Physiol. 132, 313-314
   Full Text »    PDF »
An Unexpected Role for Ion Channels in Brain Tumor Metastasis.
H. Sontheimer (2008)
Experimental Biology and Medicine 233, 779-791
   Abstract »    Full Text »    PDF »
Voltage-Gated Na+ Channel {beta}1 Subunit-Mediated Neurite Outgrowth Requires Fyn Kinase and Contributes to Postnatal CNS Development In Vivo.
W. J. Brackenbury, T. H. Davis, C. Chen, E. A. Slat, M. J. Detrow, T. L. Dickendesher, B. Ranscht, and L. L. Isom (2008)
J. Neurosci. 28, 3246-3256
   Abstract »    Full Text »    PDF »
Functional ion channels in mouse bone marrow mesenchymal stem cells.
R. Tao, C.-P. Lau, H.-F. Tse, and G.-R. Li (2007)
Am J Physiol Cell Physiol 293, C1561-C1567
   Abstract »    Full Text »    PDF »
A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin.
L. Tian, L. Chen, H. McClafferty, C. A. Sailer, P. Ruth, H.-G. Knaus, and M. J. Shipston (2006)
FASEB J 20, 2588-2590
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882