Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 104 (18): 7432-7437

Copyright © 2007 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

betaKlotho is required for metabolic activity of fibroblast growth factor 21

Yasushi Ogawa*, Hiroshi Kurosu*, Masaya Yamamoto*, Animesh Nandi*, Kevin P. Rosenblatt*, Regina Goetz{dagger}, Anna V. Eliseenkova{dagger}, Moosa Mohammadi{dagger}, and Makoto Kuro-o*,{ddagger}

*Department of Pathology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390; and {dagger}Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 425, New York, NY 10016

Edited by Michael S. Brown, University of Texas Southwestern Medical Center, Dallas, TX, and approved March 26, 2007

Received for publication February 21, 2007.

Abstract: Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine factor that stimulates glucose uptake in adipocytes. Here, we show that FGF21 activity depends on betaKlotho, a single-pass transmembrane protein whose expression is induced during differentiation from preadipocytes to adipocytes. betaKlotho physically interacts with FGF receptors 1c and 4, thereby increasing the ability of these FGF receptors to bind FGF21 and activate the MAP kinase cascade. Knockdown of betaKlotho expression by siRNA in adipocytes diminishes glucose uptake induced by FGF21. Importantly, administration of FGF21 into mice induces MAP kinase phosphorylation in white adipose tissue and not in tissues without betaKlotho expression. Thus, betaKlotho functions as a cofactor essential for FGF21 activity.

Key Words: Klotho • glucose • adipocyte • siRNA • GLUT1


Freely available online through the PNAS open access option.

Author contributions: Y.O. and H.K. contributed equally to this work; Y.O., H.K., and M.K. designed research; Y.O, H.K., M.Y., A.N., and M.K. performed research; A.N., K.P.R., R.G., A.V.E., and M.M. contributed new reagents/analytic tools; Y.O., H.K., and M.K. analyzed data; and Y.O., H.K., M.M. and M.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

{ddagger}To whom correspondence should be addressed. E-mail: makoto.kuro-o{at}utsouthwestern.edu

© 2007 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Physiology and Endocrinology Symposium: FGF21: Insights into mechanism of action from preclinical studies.
P. J. Antonellis, A. Kharitonenkov, and A. C. Adams (2014)
J Anim Sci 92, 407-413
   Abstract »    Full Text »    PDF »
Biochemical and Functional Characterization of the Klotho-VS Polymorphism Implicated in Aging and Disease Risk.
T. B. Tucker Zhou, G. D. King, C. Chen, and C. R. Abraham (2013)
J. Biol. Chem. 288, 36302-36311
   Abstract »    Full Text »    PDF »
High Glucose Represses {beta}-Klotho Expression and Impairs Fibroblast Growth Factor 21 Action in Mouse Pancreatic Islets: Involvement of Peroxisome Proliferator-Activated Receptor {gamma} Signaling.
W. Y. So, Q. Cheng, L. Chen, C. Evans-Molina, A. Xu, K. S. L. Lam, and P. S. Leung (2013)
Diabetes 62, 3751-3759
   Abstract »    Full Text »    PDF »
Increased FGF21 plasma levels in humans with sepsis and SIRS.
K. Gariani, G. Drifte, I. Dunn-Siegrist, J. Pugin, and F. R. Jornayvaz (2013)
Endocrine Connections 2, 146-153
   Abstract »    Full Text »    PDF »
Development of a Novel Long-Acting Antidiabetic FGF21 Mimetic by Targeted Conjugation to a Scaffold Antibody.
J. Huang, T. Ishino, G. Chen, P. Rolzin, T. F. Osothprarop, K. Retting, L. Li, P. Jin, M. J. Matin, B. Huyghe, et al. (2013)
J. Pharmacol. Exp. Ther. 346, 270-280
   Abstract »    Full Text »    PDF »
Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice.
N. Nagai, H. Habuchi, N. Sugaya, M. Nakamura, T. Imamura, H. Watanabe, and K. Kimata (2013)
Glycobiology 23, 980-992
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Fibroblast Growth Factor Signaling in Physiology and Pathology.
A. A. Belov and M. Mohammadi (2013)
Cold Spring Harb Perspect Biol 5, a015958
   Abstract »    Full Text »    PDF »
Dual actions of fibroblast growth factor 19 on lipid metabolism.
X. Wu, H. Ge, H. Baribault, J. Gupte, J. Weiszmann, B. Lemon, J. Gardner, P. Fordstrom, J. Tang, M. Zhou, et al. (2013)
J. Lipid Res. 54, 325-332
   Abstract »    Full Text »    PDF »
Fibroblast growth factor-21 serum concentrations are associated with metabolic and hepatic markers in humans.
S. Kralisch, A. Tonjes, K. Krause, J. Richter, U. Lossner, P. Kovacs, T. Ebert, M. Bluher, M. Stumvoll, and M. Fasshauer (2013)
J. Endocrinol. 216, 135-143
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 Predicts the Metabolic Syndrome and Type 2 Diabetes in Caucasians.
T. Bobbert, F. Schwarz, A. Fischer-Rosinsky, A. F. H. Pfeiffer, M. Mohlig, K. Mai, and J. Spranger (2013)
Diabetes Care 36, 145-149
   Abstract »    Full Text »    PDF »
Treating Diabetes and Obesity with an FGF21-Mimetic Antibody Activating the {beta}Klotho/FGFR1c Receptor Complex.
I. N. Foltz, S. Hu, C. King, X. Wu, C. Yang, W. Wang, J. Weiszmann, J. Stevens, J. S. Chen, N. Nuanmanee, et al. (2012)
Science Translational Medicine 4, 162ra153
   Abstract »    Full Text »    PDF »
Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor {beta}-Klotho.
T. Fu, S.-E. Choi, D.-H. Kim, S. Seok, K. M. Suino-Powell, H. E. Xu, and J. K. Kemper (2012)
PNAS 109, 16137-16142
   Abstract »    Full Text »    PDF »
MECHANISMS IN ENDOCRINOLOGY: Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21.
P. Iglesias, R. Selgas, S. Romero, and J. J. Diez (2012)
Eur. J. Endocrinol. 167, 301-309
   Abstract »    Full Text »    PDF »
Searching for ways to switch on brown fat: are we getting warmer?.
A. Whittle (2012)
J. Mol. Endocrinol. 49, R79-R87
   Abstract »    Full Text »    PDF »
Conversion of a Paracrine Fibroblast Growth Factor into an Endocrine Fibroblast Growth Factor.
R. Goetz, M. Ohnishi, S. Kir, H. Kurosu, L. Wang, J. Pastor, J. Ma, W. Gai, M. Kuro-o, M. S. Razzaque, et al. (2012)
J. Biol. Chem. 287, 29134-29146
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 (FGF21) Inhibits Chondrocyte Function and Growth Hormone Action Directly at the Growth Plate.
S. Wu, A. Levenson, A. Kharitonenkov, and F. De Luca (2012)
J. Biol. Chem. 287, 26060-26067
   Abstract »    Full Text »    PDF »
Dynamics and Distribution of Klotho{beta} (KLB) and Fibroblast Growth Factor Receptor-1 (FGFR1) in Living Cells Reveal the Fibroblast Growth Factor-21 (FGF21)-induced Receptor Complex.
A. Y. K. Ming, E. Yoo, E. N. Vorontsov, S. M. Altamentova, D. M. Kilkenny, and J. V. Rocheleau (2012)
J. Biol. Chem. 287, 19997-20006
   Abstract »    Full Text »    PDF »
Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands.
R. Goetz, M. Ohnishi, X. Ding, H. Kurosu, L. Wang, J. Akiyoshi, J. Ma, W. Gai, Y. Sidis, N. Pitteloud, et al. (2012)
Mol. Cell. Biol. 32, 1944-1954
   Abstract »    Full Text »    PDF »
Endocrine fibroblast growth factors 15/19 and 21: from feast to famine.
M. J. Potthoff, S. A. Kliewer, and D. J. Mangelsdorf (2012)
Genes & Dev. 26, 312-324
   Abstract »    Full Text »    PDF »
Regulation and Function of the FGF23/Klotho Endocrine Pathways.
A. Martin, V. David, and L. D. Quarles (2012)
Physiol Rev 92, 131-155
   Abstract »    Full Text »    PDF »
Amelioration of Type 2 Diabetes by Antibody-Mediated Activation of Fibroblast Growth Factor Receptor 1.
A.-L. Wu, G. Kolumam, S. Stawicki, Y. Chen, J. Li, J. Zavala-Solorio, K. Phamluong, B. Feng, L. Li, S. Marsters, et al. (2011)
Science Translational Medicine 3, 113ra126
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 Induces Glucose Transporter-1 Expression through Activation of the Serum Response Factor/Ets-Like Protein-1 in Adipocytes.
X. Ge, C. Chen, X. Hui, Y. Wang, K. S. L. Lam, and A. Xu (2011)
J. Biol. Chem. 286, 34533-34541
   Abstract »    Full Text »    PDF »
Nrf2 Represses FGF21 During Long-Term High-Fat Diet-Induced Obesity in Mice.
D. V. Chartoumpekis, P. G. Ziros, A. I. Psyrogiannis, A. G. Papavassiliou, V. E. Kyriazopoulou, G. P. Sykiotis, and I. G. Habeos (2011)
Diabetes 60, 2465-2473
   Abstract »    Full Text »    PDF »
Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis.
E. M. Domouzoglou and E. Maratos-Flier (2011)
Am J Clin Nutr 93, 901S-905S
   Abstract »    Full Text »    PDF »
The Cooperation of FGF Receptor and Klotho Is Involved in Excretory Canal Development and Regulation of Metabolic Homeostasis in Caenorhabditis elegans.
U. M. Polanska, E. Edwards, D. G. Fernig, and T. K. Kinnunen (2011)
J. Biol. Chem. 286, 5657-5666
   Abstract »    Full Text »    PDF »
Circulating Fibroblast Growth Factor-23 Is Associated With Fat Mass and Dyslipidemia in Two Independent Cohorts of Elderly Individuals.
M. A. I. Mirza, J. Alsio, A. Hammarstedt, R. G. Erben, K. Michaelsson, A. Tivesten, R. Marsell, E. Orwoll, M. K. Karlsson, O. Ljunggren, et al. (2011)
Arterioscler Thromb Vasc Biol 31, 219-227
   Abstract »    Full Text »    PDF »
Obesity Is a Fibroblast Growth Factor 21 (FGF21)-Resistant State.
f. M. Fisher, P. C. Chui, P. J. Antonellis, H. A. Bina, A. Kharitonenkov, J. S. Flier, and E. Maratos-Flier (2010)
Diabetes 59, 2781-2789
   Abstract »    Full Text »    PDF »
Metabolic Regulator {beta}Klotho Interacts with Fibroblast Growth Factor Receptor 4 (FGFR4) to Induce Apoptosis and Inhibit Tumor Cell Proliferation.
Y. Luo, C. Yang, W. Lu, R. Xie, C. Jin, P. Huang, F. Wang, and W. L. McKeehan (2010)
J. Biol. Chem. 285, 30069-30078
   Abstract »    Full Text »    PDF »
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1{alpha} pathway.
M. D. L. Chau, J. Gao, Q. Yang, Z. Wu, and J. Gromada (2010)
PNAS 107, 12553-12558
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 Action in the Brain Increases Energy Expenditure and Insulin Sensitivity in Obese Rats.
D. A. Sarruf, J. P. Thaler, G. J. Morton, J. German, J. D. Fischer, K. Ogimoto, and M. W. Schwartz (2010)
Diabetes 59, 1817-1824
   Abstract »    Full Text »    PDF »
FGF19-induced Hepatocyte Proliferation Is Mediated through FGFR4 Activation.
X. Wu, H. Ge, B. Lemon, S. Vonderfecht, J. Weiszmann, R. Hecht, J. Gupte, T. Hager, Z. Wang, R. Lindberg, et al. (2010)
J. Biol. Chem. 285, 5165-5170
   Abstract »    Full Text »    PDF »
Relevant use of Klotho in FGF19 subfamily signaling system in vivo.
K.-i. Tomiyama, R. Maeda, I. Urakawa, Y. Yamazaki, T. Tanaka, S. Ito, Y. Nabeshima, T. Tomita, S. Odori, K. Hosoda, et al. (2010)
PNAS 107, 1666-1671
   Abstract »    Full Text »    PDF »
Fibroblast growth factor 21: from pharmacology to physiology.
S. A Kliewer and D. J Mangelsdorf (2010)
Am J Clin Nutr 91, 254S-257S
   Abstract »    Full Text »    PDF »
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models--association with liver and adipose tissue effects.
J. Xu, S. Stanislaus, N. Chinookoswong, Y. Y. Lau, T. Hager, J. Patel, H. Ge, J. Weiszmann, S.-C. Lu, M. Graham, et al. (2009)
Am J Physiol Endocrinol Metab 297, E1105-E1114
   Abstract »    Full Text »    PDF »
Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice.
X. Wu, H. Ge, B. Lemon, J. Weiszmann, J. Gupte, N. Hawkins, X. Li, J. Tang, R. Lindberg, and Y. Li (2009)
PNAS 106, 14379-14384
   Abstract »    Full Text »    PDF »
FGF21 induces PGC-1{alpha} and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response.
M. J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz, M. Mohammadi, B. N. Finck, D. J. Mangelsdorf, S. A. Kliewer, et al. (2009)
PNAS 106, 10853-10858
   Abstract »    Full Text »    PDF »
FGF15/FGFR4 Integrates Growth Factor Signaling with Hepatic Bile Acid Metabolism and Insulin Action.
D.-J. Shin and T. F. Osborne (2009)
J. Biol. Chem. 284, 11110-11120
   Abstract »    Full Text »    PDF »
Essential role of glucose transporter GLUT3 for post-implantation embryonic development.
S Schmidt, A Hommel, V Gawlik, R Augustin, N Junicke, S Florian, M Richter, D J Walther, D Montag, H-G Joost, et al. (2009)
J. Endocrinol. 200, 23-33
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice.
J. Xu, D. J. Lloyd, C. Hale, S. Stanislaus, M. Chen, G. Sivits, S. Vonderfecht, R. Hecht, Y.-S. Li, R. A. Lindberg, et al. (2009)
Diabetes 58, 250-259
   Abstract »    Full Text »    PDF »
C-terminal Tail of FGF19 Determines Its Specificity toward Klotho Co-receptors.
X. Wu, B. Lemon, X. Li, J. Gupte, J. Weiszmann, J. Stevens, N. Hawkins, W. Shen, R. Lindberg, J.-L. Chen, et al. (2008)
J. Biol. Chem. 283, 33304-33309
   Abstract »    Full Text »    PDF »
Serum FGF21 Levels Are Increased in Obesity and Are Independently Associated With the Metabolic Syndrome in Humans.
X. Zhang, D. C.Y. Yeung, M. Karpisek, D. Stejskal, Z.-G. Zhou, F. Liu, R. L.C. Wong, W.-S. Chow, A. W.K. Tso, K. S.L. Lam, et al. (2008)
Diabetes 57, 1246-1253
   Abstract »    Full Text »    PDF »
Identification of a Domain within Peroxisome Proliferator-Activated Receptor {gamma} Regulating Expression of a Group of Genes Containing Fibroblast Growth Factor 21 That Are Selectively Repressed by SIRT1 in Adipocytes.
H. Wang, L. Qiang, and S. R. Farmer (2008)
Mol. Cell. Biol. 28, 188-200
   Abstract »    Full Text »    PDF »
Co-receptor Requirements for Fibroblast Growth Factor-19 Signaling.
X. Wu, H. Ge, J. Gupte, J. Weiszmann, G. Shimamoto, J. Stevens, N. Hawkins, B. Lemon, W. Shen, J. Xu, et al. (2007)
J. Biol. Chem. 282, 29069-29072
   Abstract »    Full Text »    PDF »
Liver-specific Activities of FGF19 Require Klotho beta.
B. C. Lin, M. Wang, C. Blackmore, and L. R. Desnoyers (2007)
J. Biol. Chem. 282, 27277-27284
   Abstract »    Full Text »    PDF »
Tissue-specific Expression of betaKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21.
H. Kurosu, M. Choi, Y. Ogawa, A. S. Dickson, R. Goetz, A. V. Eliseenkova, M. Mohammadi, K. P. Rosenblatt, S. A. Kliewer, and M. Kuro-o (2007)
J. Biol. Chem. 282, 26687-26695
   Abstract »    Full Text »    PDF »
PHYSIOLOGY: Sister Act.
D. D. Moore (2007)
Science 316, 1436-1438
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882