Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 104 (2): 582-587

Copyright © 2007 by the National Academy of Sciences.


Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2

Takeshi Saito*, Reiko Hirai{dagger}, Yueh-Ming Loo*, David Owen*, Cynthia L. Johnson*, Sangita C. Sinha{ddagger}, Shizuo Akira§, Takashi Fujita{dagger}, and Michael Gale, Jr.*

Departments of *Microbiology and {ddagger}Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75235-9048; {dagger}Department of Genetics and Molecular Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and §Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 560-0043, Japan

Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved November 1, 2006

Received for publication August 3, 2006.

Abstract: RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-{alpha}/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-{kappa}B-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.

Key Words: hepatitis C virus • IFN • IPS-1 • MAVS • Cardif

Author contributions: T.S., R.H., C.L.J., T.F., and M.G. designed research; T.S., R.H., Y.-M.L., D.O., C.L.J., S.C.S., T.F., and M.G. performed research; T.S., Y.-M.L., S.A., and M.G. contributed new reagents/analytic tools; T.S., D.O., C.L.J., S.C.S., T.F., and M.G. analyzed data; and T.S. and R.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS direct submission.

This article contains supporting information online at

To whom correspondence should be addressed at: Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9048. E-mail: michael.gale{at}

© 2007 by The National Academy of Sciences of the USA

Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses.
M. K. Nayak, A. S. Agrawal, S. Bose, S. Naskar, R. Bhowmick, S. Chakrabarti, S. Sarkar, and M. Chawla-Sarkar (2014)
J. Antimicrob. Chemother. 69, 1298-1310
   Abstract »    Full Text »    PDF »
Mitophagy Enhances Oncolytic Measles Virus Replication by Mitigating DDX58/RIG-I-Like Receptor Signaling.
M. Xia, P. Gonzalez, C. Li, G. Meng, A. Jiang, H. Wang, Q. Gao, K.-M. Debatin, C. Beltinger, and J. Wei (2014)
J. Virol. 88, 5152-5164
   Abstract »    Full Text »    PDF »
Protective Role of LGP2 in Influenza Virus Pathogenesis.
M. Si-Tahar, F. Blanc, L. Furio, D. Chopy, V. Balloy, M. Lafon, M. Chignard, L. Fiette, F. Langa, P. Charneau, et al. (2014)
The Journal of Infectious Disease
   Abstract »    Full Text »    PDF »
IPS-1 Is Essential for Type III IFN Production by Hepatocytes and Dendritic Cells in Response to Hepatitis C Virus Infection.
M. Okamoto, H. Oshiumi, M. Azuma, N. Kato, M. Matsumoto, and T. Seya (2014)
J. Immunol. 192, 2770-2777
   Abstract »    Full Text »    PDF »
Cloning and Expression of Retinoic Acid-Induced Gene-I and Its Effect on Hepatitis C Virus Replication.
Y. Shen, Y. Qian, L. Shen, Z. Wu, C. Xu, and X. Tong (2014)
Lab Med 45, 103-110
   Abstract »    Full Text »    PDF »
RIG-I-like receptor LGP2 protects tumor cells from ionizing radiation.
R. C. Widau, A. D. Parekh, M. C. Ranck, D. W. Golden, K. A. Kumar, R. F. Sood, S. P. Pitroda, Z. Liao, X. Huang, T. E. Darga, et al. (2014)
PNAS 111, E484-E491
   Abstract »    Full Text »    PDF »
Pattern Recognition Receptor MDA5 Modulates CD8+ T Cell-Dependent Clearance of West Nile Virus from the Central Nervous System.
H. M. Lazear, A. K. Pinto, H. J. Ramos, S. C. Vick, B. Shrestha, M. S. Suthar, M. Gale Jr., and M. S. Diamond (2013)
J. Virol. 87, 11401-11415
   Abstract »    Full Text »    PDF »
Identification and expression profiling analysis of goose melanoma differentiation associated gene 5 (MDA5) gene.
L. M. Wei, P. R. Jiao, Y. F. Song, F. Han, L. Cao, F. Yang, T. Ren, and M. Liao (2013)
Poultry Science 92, 2618-2624
   Abstract »    Full Text »    PDF »
Negative Regulation of RIG-I-Mediated Innate Antiviral Signaling by SEC14L1.
M.-T. Li, W. Di, H. Xu, Y.-K. Yang, H.-W. Chen, F.-X. Zhang, Z.-H. Zhai, and D.-Y. Chen (2013)
J. Virol. 87, 10037-10046
   Abstract »    Full Text »    PDF »
Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly.
S. A. Beckham, J. Brouwer, A. Roth, D. Wang, A. J. Sadler, M. John, K. Jahn-Hofmann, B. R. G. Williams, J. A. Wilce, and M. C. J. Wilce (2013)
Nucleic Acids Res. 41, 3436-3445
   Abstract »    Full Text »    PDF »
ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune Sensor, Laboratory of Genetics and Physiology 2 (LGP2).
A. M. Bruns, D. Pollpeter, N. Hadizadeh, S. Myong, J. F. Marko, and C. M. Horvath (2013)
J. Biol. Chem. 288, 938-946
   Abstract »    Full Text »    PDF »
A structure-based model of RIG-I activation.
D. Kolakofsky, E. Kowalinski, and S. Cusack (2012)
RNA 18, 2118-2127
   Abstract »    Full Text »    PDF »
Recognition of viruses in the cytoplasm by RLRs and other helicases--how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses.
C. S. Ng, H. Kato, and T. Fujita (2012)
Int. Immunol. 24, 739-749
   Abstract »    Full Text »    PDF »
LGP2 Downregulates Interferon Production during Infection with Seasonal Human Influenza A Viruses That Activate Interferon Regulatory Factor 3.
M. Malur, M. Gale Jr, and R. M. Krug (2012)
J. Virol. 86, 10733-10738
   Abstract »    Full Text »    PDF »
NLRs, inflammasomes, and viral infection.
S. R. Jacobs and B. Damania (2012)
J. Leukoc. Biol. 92, 469-477
   Abstract »    Full Text »    PDF »
Isoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses.
K. M. Bedard, M. L. Wang, S. C. Proll, Y.-M. Loo, M. G. Katze, M. Gale Jr., and S. P. Iadonato (2012)
J. Virol. 86, 7334-7344
   Abstract »    Full Text »    PDF »
Metabolism, Pharmacokinetics, Tissue Distribution, and Stability Studies of the Prodrug Analog of an Anti-Hepatitis B Virus Dinucleoside Phosphorothioate.
J. E. Coughlin, R. K. Pandey, S. Padmanabhan, K. G. O'Loughlin, J. Marquis, C. E. Green, J. C. Mirsalis, and R. P. Iyer (2012)
Drug Metab. Dispos. 40, 970-981
   Abstract »    Full Text »    PDF »
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA.
I. C. Berke and Y. Modis (2012)
EMBO J. 31, 1714-1726
   Abstract »    Full Text »    PDF »
Paramyxovirus V Proteins Interact with the RNA Helicase LGP2 To Inhibit RIG-I-Dependent Interferon Induction.
K. Childs, R. Randall, and S. Goodbourn (2012)
J. Virol. 86, 3411-3421
   Abstract »    Full Text »    PDF »
Control of Innate Immune Signaling and Membrane Targeting by the Hepatitis C Virus NS3/4A Protease Are Governed by the NS3 Helix {alpha}0.
S. M. Horner, H. S. Park, and M. Gale Jr. (2012)
J. Virol. 86, 3112-3120
   Abstract »    Full Text »    PDF »
Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion.
S. Jensen and A. R. Thomsen (2012)
J. Virol. 86, 2900-2910
   Abstract »    Full Text »    PDF »
5'-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity.
S.-Y. Hwang, H.-Y. Sun, K.-H. Lee, B.-H. Oh, Y. J. Cha, B. H. Kim, and J.-Y. Yoo (2012)
Nucleic Acids Res. 40, 2724-2733
   Abstract »    Full Text »    PDF »
Conventional Protein Kinase C-{alpha} (PKC-{alpha}) and PKC-{beta} Negatively Regulate RIG-I Antiviral Signal Transduction.
N. P. Maharaj, E. Wies, A. Stoll, and M. U. Gack (2012)
J. Virol. 86, 1358-1371
   Abstract »    Full Text »    PDF »
Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I.
H. Oshiumi, M. Matsumoto, and T. Seya (2012)
J. Biochem. 151, 5-11
   Abstract »    Full Text »    PDF »
Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition.
A. Peisley, C. Lin, B. Wu, M. Orme-Johnson, M. Liu, T. Walz, and S. Hur (2011)
PNAS 108, 21010-21015
   Abstract »    Full Text »    PDF »
The selective footprints of viral pressures at the human RIG-I-like receptor family.
E. Vasseur, E. Patin, G. Laval, S. Pajon, S. Fornarino, B. Crouau-Roy, and L. Quintana-Murci (2011)
Hum. Mol. Genet. 20, 4462-4474
   Abstract »    Full Text »    PDF »
The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.
F. Civril, M. Bennett, M. Moldt, T. Deimling, G. Witte, S. Schiesser, T. Carell, and K.-P. Hopfner (2011)
EMBO Rep. 12, 1127-1134
   Abstract »    Full Text »    PDF »
DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling.
M. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya (2011)
Mol. Cell. Biol. 31, 3802-3819
   Abstract »    Full Text »    PDF »
Interplay between Innate Immunity and Negative-Strand RNA Viruses: towards a Rational Model.
D. Gerlier and D. S. Lyles (2011)
Microbiol. Mol. Biol. Rev. 75, 468-490
   Abstract »    Full Text »    PDF »
RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication.
M.-H. Lee, P. Lalwani, M. J. Raftery, M. Matthaei, N. Lutteke, S. Kirsanovs, M. Binder, R. G. Ulrich, T. Giese, T. Wolff, et al. (2011)
J. Gen. Virol. 92, 2191-2200
   Abstract »    Full Text »    PDF »
Expression and Functional Characterization of the RIG-I-Like Receptors MDA5 and LGP2 in Rainbow Trout (Oncorhynchus mykiss).
M. Chang, B. Collet, P. Nie, K. Lester, S. Campbell, C. J. Secombes, and J. Zou (2011)
J. Virol. 85, 8403-8412
   Abstract »    Full Text »    PDF »
ARF-like Protein 16 (ARL16) Inhibits RIG-I by Binding with Its C-terminal Domain in a GTP-dependent Manner.
Y.-K. Yang, H. Qu, D. Gao, W. Di, H.-W. Chen, X. Guo, Z.-H. Zhai, and D.-Y. Chen (2011)
J. Biol. Chem. 286, 10568-10580
   Abstract »    Full Text »    PDF »
RIG-I/MDA5/MAVS Are Required To Signal a Protective IFN Response in Rotavirus-Infected Intestinal Epithelium.
A. H. Broquet, Y. Hirata, C. S. McAllister, and M. F. Kagnoff (2011)
J. Immunol. 186, 1618-1626
   Abstract »    Full Text »    PDF »
Phosphorylation of RIG-I by Casein Kinase II Inhibits Its Antiviral Response.
Z. Sun, H. Ren, Y. Liu, J. L. Teeling, and J. Gu (2011)
J. Virol. 85, 1036-1047
   Abstract »    Full Text »    PDF »
Evolutional Conservation of Molecular Structure and Antiviral Function of a Viral RNA Receptor, LGP2, in Japanese Flounder, Paralichthys olivaceus.
M. Ohtani, J.-i. Hikima, H. Kondo, I. Hirono, T.-S. Jung, and T. Aoki (2010)
J. Immunol. 185, 7507-7517
   Abstract »    Full Text »    PDF »
RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP.
K. Malathi, T. Saito, N. Crochet, D. J. Barton, M. Gale Jr, and R. H. Silverman (2010)
RNA 16, 2108-2119
   Abstract »    Full Text »    PDF »
Replication of Subgenomic Hepatitis C Virus Replicons in Mouse Fibroblasts Is Facilitated by Deletion of Interferon Regulatory Factor 3 and Expression of Liver-Specific MicroRNA 122.
L.-T. Lin, R. S. Noyce, T. N. Q. Pham, J. A. Wilson, G. R. Sisson, T. I. Michalak, K. L. Mossman, and C. D. Richardson (2010)
J. Virol. 84, 9170-9180
   Abstract »    Full Text »    PDF »
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing.
A. Baum, R. Sachidanandam, and A. Garcia-Sastre (2010)
PNAS 107, 16303-16308
   Abstract »    Full Text »    PDF »
Interferon-stimulated gene 15: a dual activity during hepatitis C virus infection.
E. Estrabaud and T. Asselah (2010)
Gut 59, 1017-1019
   Full Text »    PDF »
Induction and Evasion of Innate Antiviral Responses by Hepatitis C Virus.
S. M. Lemon (2010)
J. Biol. Chem. 285, 22741-22747
   Abstract »    Full Text »    PDF »
A Common Polymorphism in the Caspase Recruitment Domain of RIG-I Modifies the Innate Immune Response of Human Dendritic Cells.
J. Hu, E. Nistal-Villan, A. Voho, A. Ganee, M. Kumar, Y. Ding, A. Garcia-Sastre, and J. G. Wetmur (2010)
J. Immunol. 185, 424-432
   Abstract »    Full Text »    PDF »
Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-{beta} Production.
E. Nistal-Villan, M. U. Gack, G. Martinez-Delgado, N. P. Maharaj, K.-S. Inn, H. Yang, R. Wang, A. K. Aggarwal, J. U. Jung, and A. Garcia-Sastre (2010)
J. Biol. Chem. 285, 20252-20261
   Abstract »    Full Text »    PDF »
TRIM Proteins: Another Class of Viral Victims.
M. Munir (2010)
Science Signaling 3, jc2
   Abstract »    Full Text »    PDF »
Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity.
M. U. Gack, E. Nistal-Villan, K.-S. Inn, A. Garcia-Sastre, and J. U. Jung (2010)
J. Virol. 84, 3220-3229
   Abstract »    Full Text »    PDF »
Z Proteins of New World Arenaviruses Bind RIG-I and Interfere with Type I Interferon Induction.
L. Fan, T. Briese, and W. I. Lipkin (2010)
J. Virol. 84, 1785-1791
   Abstract »    Full Text »    PDF »
LGP2: Positive about viral sensing.
E. M. Y. Moresco and B. Beutler (2010)
PNAS 107, 1261-1262
   Full Text »    PDF »
LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.
T. Satoh, H. Kato, Y. Kumagai, M. Yoneyama, S. Sato, K. Matsushita, T. Tsujimura, T. Fujita, S. Akira, and O. Takeuchi (2010)
PNAS 107, 1512-1517
   Abstract »    Full Text »    PDF »
Regulation of Adaptive Immunity by the Innate Immune System.
A. Iwasaki and R. Medzhitov (2010)
Science 327, 291-295
   Abstract »    Full Text »    PDF »
Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS.
D. Vitour, S. Dabo, M. Ahmadi Pour, M. Vilasco, P.-O. Vidalain, Y. Jacob, M. Mezel-Lemoine, S. Paz, M. Arguello, R. Lin, et al. (2009)
J. Biol. Chem. 284, 21797-21809
   Abstract »    Full Text »    PDF »
A Shared Interface Mediates Paramyxovirus Interference with Antiviral RNA Helicases MDA5 and LGP2.
J.-P. Parisien, D. Bamming, A. Komuro, A. Ramachandran, J. J. Rodriguez, G. Barber, R. D. Wojahn, and C. M. Horvath (2009)
J. Virol. 83, 7252-7260
   Abstract »    Full Text »    PDF »
Solution Structures of Cytosolic RNA Sensor MDA5 and LGP2 C-terminal Domains: IDENTIFICATION OF THE RNA RECOGNITION LOOP IN RIG-I-LIKE RECEPTORS.
K. Takahasi, H. Kumeta, N. Tsuduki, R. Narita, T. Shigemoto, R. Hirai, M. Yoneyama, M. Horiuchi, K. Ogura, T. Fujita, et al. (2009)
J. Biol. Chem. 284, 17465-17474
   Abstract »    Full Text »    PDF »
Gene expression and hepatitis C virus infection.
T Asselah, I Bieche, A Sabbagh, P Bedossa, R Moreau, D Valla, M Vidaud, and P Marcellin (2009)
Gut 58, 846-858
   Abstract »    Full Text »    PDF »
The RIG-I-like Receptor LGP2 Recognizes the Termini of Double-stranded RNA.
X. Li, C. T. Ranjith-Kumar, M. T. Brooks, S. Dharmaiah, A. B. Herr, C. Kao, and P. Li (2009)
J. Biol. Chem. 284, 13881-13891
   Abstract »    Full Text »    PDF »
Identification of Loss of Function Mutations in Human Genes Encoding RIG-I and MDA5: IMPLICATIONS FOR RESISTANCE TO TYPE I DIABETES.
T. Shigemoto, M. Kageyama, R. Hirai, J. Zheng, M. Yoneyama, and T. Fujita (2009)
J. Biol. Chem. 284, 13348-13354
   Abstract »    Full Text »    PDF »
Nucleotide Sequences and Modifications That Determine RIG-I/RNA Binding and Signaling Activities.
D. Uzri and L. Gehrke (2009)
J. Virol. 83, 4174-4184
   Abstract »    Full Text »    PDF »
MAVS Self-Association Mediates Antiviral Innate Immune Signaling.
E. D. Tang and C.-Y. Wang (2009)
J. Virol. 83, 3420-3428
   Abstract »    Full Text »    PDF »
Regulation of Signal Transduction by Enzymatically Inactive Antiviral RNA Helicase Proteins MDA5, RIG-I, and LGP2.
D. Bamming and C. M. Horvath (2009)
J. Biol. Chem. 284, 9700-9712
   Abstract »    Full Text »    PDF »
Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses.
T. H. Mogensen (2009)
Clin. Microbiol. Rev. 22, 240-273
   Abstract »    Full Text »    PDF »
The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA.
D. A. Pippig, J. C. Hellmuth, S. Cui, A. Kirchhofer, K. Lammens, A. Lammens, A. Schmidt, S. Rothenfusser, and K.-P. Hopfner (2009)
Nucleic Acids Res. 37, 2014-2025
   Abstract »    Full Text »    PDF »
Cytosolic Viral Sensor RIG-I Is a 5'-Triphosphate-Dependent Translocase on Double-Stranded RNA.
S. Myong, S. Cui, P. V. Cornish, A. Kirchhofer, M. U. Gack, J. U. Jung, K.-P. Hopfner, and T. Ha (2009)
Science 323, 1070-1074
   Abstract »    Full Text »    PDF »
Mechanism of mda-5 Inhibition by Paramyxovirus V Proteins.
K. S. Childs, J. Andrejeva, R. E. Randall, and S. Goodbourn (2009)
J. Virol. 83, 1465-1473
   Abstract »    Full Text »    PDF »
MAVS Dimer Is a Crucial Signaling Component of Innate Immunity and the Target of Hepatitis C Virus NS3/4A Protease.
M. Baril, M.-E. Racine, F. Penin, and D. Lamarre (2009)
J. Virol. 83, 1299-1311
   Abstract »    Full Text »    PDF »
Activation of Pattern Recognition Receptor-Mediated Innate Immunity Inhibits the Replication of Hepatitis B Virus in Human Hepatocyte-Derived Cells.
H. Guo, D. Jiang, D. Ma, J. Chang, A. M. Dougherty, A. Cuconati, T. M. Block, and J.-T. Guo (2009)
J. Virol. 83, 847-858
   Abstract »    Full Text »    PDF »
Riplet/RNF135, a RING Finger Protein, Ubiquitinates RIG-I to Promote Interferon-{beta} Induction during the Early Phase of Viral Infection.
H. Oshiumi, M. Matsumoto, S. Hatakeyama, and T. Seya (2009)
J. Biol. Chem. 284, 807-817
   Abstract »    Full Text »    PDF »
Agonist and Antagonist Recognition by RIG-I, a Cytoplasmic Innate Immunity Receptor.
C. T. Ranjith-Kumar, A. Murali, W. Dong, D. Srisathiyanarayanan, R. Vaughan, J. Ortiz-Alacantara, K. Bhardwaj, X. Li, P. Li, and C. C. Kao (2009)
J. Biol. Chem. 284, 1155-1165
   Abstract »    Full Text »    PDF »
Negative Regulation of Virus-triggered IFN-{beta} Signaling Pathway by Alternative Splicing of TBK1.
W. Deng, M. Shi, M. Han, J. Zhong, Z. Li, W. Li, Y. Hu, L. Yan, J. Wang, Y. He, et al. (2008)
J. Biol. Chem. 283, 35590-35597
   Abstract »    Full Text »    PDF »
Active Caspase-1-Mediated Secretion of Retinoic Acid Inducible Gene-I.
M.-J. Kim and J.-Y. Yoo (2008)
J. Immunol. 181, 7324-7331
   Abstract »    Full Text »    PDF »
Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.
M. U. Gack, A. Kirchhofer, Y. C. Shin, K.-S. Inn, C. Liang, S. Cui, S. Myong, T. Ha, K.-P. Hopfner, and J. U. Jung (2008)
PNAS 105, 16743-16748
   Abstract »    Full Text »    PDF »
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.
H. Kato, O. Takeuchi, E. Mikamo-Satoh, R. Hirai, T. Kawai, K. Matsushita, A. Hiiragi, T. S. Dermody, T. Fujita, and S. Akira (2008)
J. Exp. Med. 205, 1601-1610
   Abstract »    Full Text »    PDF »
Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity.
T. Saito and M. Gale Jr. (2008)
J. Exp. Med. 205, 1523-1527
   Abstract »    Full Text »    PDF »
Structure and Function of LGP2, a DEX(D/H) Helicase That Regulates the Innate Immunity Response.
A. Murali, X. Li, C. T. Ranjith-Kumar, K. Bhardwaj, A. Holzenburg, P. Li, and C. C. Kao (2008)
J. Biol. Chem. 283, 15825-15833
   Abstract »    Full Text »    PDF »
Essential Role of the N-terminal Domain in the Regulation of RIG-I ATPase Activity.
P. Gee, P. K. Chua, J. Gevorkyan, K. Klumpp, I. Najera, D. C. Swinney, and J. Deval (2008)
J. Biol. Chem. 283, 9488-9496
   Abstract »    Full Text »    PDF »
The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members.
T. A. Farazi, S. A. Juranek, and T. Tuschl (2008)
Development 135, 1201-1214
   Abstract »    Full Text »    PDF »
Cutting Edge: Innate Immune Response Triggered by Influenza A Virus Is Negatively Regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-Dependent Pathway.
J. Pothlichet, M. Chignard, and M. Si-Tahar (2008)
J. Immunol. 180, 2034-2038
   Abstract »    Full Text »    PDF »
Negative Feedback Regulation of RIG-I-Mediated Antiviral Signaling by Interferon-Induced ISG15 Conjugation.
M.-J. Kim, S.-Y. Hwang, T. Imaizumi, and J.-Y. Yoo (2008)
J. Virol. 82, 1474-1483
   Abstract »    Full Text »    PDF »
Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves both RIG-I and MDA5 Signaling through IPS-1.
B. L. Fredericksen, B. C. Keller, J. Fornek, M. G. Katze, and M. Gale Jr. (2008)
J. Virol. 82, 609-616
   Abstract »    Full Text »    PDF »
Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures.
R. E. Randall and S. Goodbourn (2008)
J. Gen. Virol. 89, 1-47
   Abstract »    Full Text »    PDF »
Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity.
Y.-M. Loo, J. Fornek, N. Crochet, G. Bajwa, O. Perwitasari, L. Martinez-Sobrido, S. Akira, M. A. Gill, A. Garcia-Sastre, M. G. Katze, et al. (2008)
J. Virol. 82, 335-345
   Abstract »    Full Text »    PDF »
Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response.
M. Tasaka, N. Sakamoto, Y. Itakura, M. Nakagawa, Y. Itsui, Y. Sekine-Osajima, Y. Nishimura-Sakurai, C.-H. Chen, M. Yoneyama, T. Fujita, et al. (2007)
J. Gen. Virol. 88, 3323-3333
   Abstract »    Full Text »    PDF »
Hepatitis C Virus Infection Induces the Beta Interferon Signaling Pathway in Immortalized Human Hepatocytes.
T. Kanda, R. Steele, R. Ray, and R. B. Ray (2007)
J. Virol. 81, 12375-12381
   Abstract »    Full Text »    PDF »
IFN-{varepsilon} Mediates TNF-{alpha}-Induced STAT1 Phosphorylation and Induction of Retinoic Acid-Inducible Gene-I in Human Cervical Cancer Cells.
T. Matsumiya, S. M. Prescott, and D. M. Stafforini (2007)
J. Immunol. 179, 4542-4549
   Abstract »    Full Text »    PDF »
Triggering the Innate Antiviral Response through IRF-3 Activation.
J. Hiscott (2007)
J. Biol. Chem. 282, 15325-15329
   Abstract »    Full Text »    PDF »
Function of RIG-I-like Receptors in Antiviral Innate Immunity.
M. Yoneyama and T. Fujita (2007)
J. Biol. Chem. 282, 15315-15318
   Full Text »    PDF »
Loss of DExD/H Box RNA Helicase LGP2 Manifests Disparate Antiviral Responses.
T. Venkataraman, M. Valdes, R. Elsby, S. Kakuta, G. Caceres, S. Saijo, Y. Iwakura, and G. N. Barber (2007)
J. Immunol. 178, 6444-6455
   Abstract »    Full Text »    PDF »
Regulation of Interferon Production by RIG-I and LGP2: A Lesson in Self-Control.
D. Vitour and E. F. Meurs (2007)
Sci. STKE 2007, pe20
   Abstract »    Full Text »    PDF »
Functional and Therapeutic Analysis of Hepatitis C Virus NS3{middle dot}4A Protease Control of Antiviral Immune Defense.
C. L. Johnson, D. M. Owen, and M. Gale Jr. (2007)
J. Biol. Chem. 282, 10792-10803
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882