Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 104 (20): 8328-8333

Copyright © 2007 by the National Academy of Sciences.


Profiling signaling polarity in chemotactic cells

Yingchun Wang{dagger}, Shi-Jian Ding{ddagger}, Wei Wang{dagger}, Jon M. Jacobs{ddagger}, Wei-Jun Qian{ddagger}, Ronald J. Moore{ddagger}, Feng Yang{ddagger}, David G. Camp, II{ddagger}, Richard D. Smith{ddagger}, and Richard L. Klemke{dagger},§

{dagger}Department of Pathology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093; and {ddagger}Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354

Edited by Peter N. Devreotes, Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 10, 2007

Received for publication February 6, 2007.

Abstract: Cell movement requires morphological polarization characterized by formation of a leading pseudopodium (PD) at the front and a trailing rear at the back. However, little is known about how protein networks are spatially integrated to regulate this process at the system level. Here, we apply global proteome profiling in combination with newly developed quantitative phosphoproteomics approaches for comparative analysis of the cell body (CB) and PD proteome of chemotactic cells. The spatial relationship of 3,509 proteins and 228 distinct sites of phosphorylation were mapped revealing networks of signaling proteins that partition to the PD and/or the CB compartments. The major network represented in the PD includes integrin signaling, actin regulatory, and axon guidance proteins, whereas the CB consists of DNA/RNA metabolism, cell cycle regulation, and structural maintenance. Our findings provide insight into the spatial organization of signaling networks that control cell movement and provide a comprehensive system-wide profile of proteins and phosphorylation sites that control cell polarization.

Key Words: bioinformatics • chemotaxis • phosphoproteomics • proteomics • cell migration

Author contributions: Y.W. and S.-J.D. contributed equally to this work; Y.W., S.-J.D., W.W., and R.L.K. designed research; Y.W., S.-J.D., and W.W. performed research; Y.W., S.-J.D., F.Y., D.G.C., R.D.S., and R.L.K. contributed new reagents/analytic tools; Y.W., S.-J.D., J.M.J., W.-J.Q., R.J.M., and R.L.K. analyzed data; and Y.W., S.-J.D., J.M.J., R.D.S., and R.L.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

§To whom correspondence should be addressed. E-mail: rklemke{at}

© 2007 by The National Academy of Sciences of the USA

Construction of human activity-based phosphorylation networks.
R. H. Newman, J. Hu, H.-S. Rho, Z. Xie, C. Woodard, J. Neiswinger, C. Cooper, M. Shirley, H. M. Clark, S. Hu, et al. (2014)
Mol Syst Biol 9, 655
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteomics Analysis Reveals Broad Regulatory Role of Heparan Sulfate on Endothelial Signaling.
H. Qiu, J.-L. Jiang, M. Liu, X. Huang, S.-J. Ding, and L. Wang (2013)
Mol. Cell. Proteomics 12, 2160-2173
   Abstract »    Full Text »    PDF »
Mitogen-activated protein kinase (MAPK/ERK) regulates adenomatous polyposis coli during growth-factor-induced cell extension.
H. Y. Caro-Gonzalez, L. N. Nejsum, K. A. Siemers, T. A. Shaler, W. J. Nelson, and A. I. M. Barth (2012)
J. Cell Sci. 125, 1247-1258
   Abstract »    Full Text »    PDF »
Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction.
Y. Wang, F. Yang, Y. Fu, X. Huang, W. Wang, X. Jiang, M. A. Gritsenko, R. Zhao, M. E. Monore, O. C. Pertz, et al. (2011)
J. Biol. Chem. 286, 18190-18201
   Abstract »    Full Text »    PDF »
The Epsin Family of Endocytic Adaptors Promotes Fibrosarcoma Migration and Invasion.
B. G. Coon, J. Burgner, J. H. Camonis, and R. C. Aguilar (2010)
J. Biol. Chem. 285, 33073-33081
   Abstract »    Full Text »    PDF »
Pseudopodium-enriched atypical kinase 1 regulates the cytoskeleton and cancer progression.
Y. Wang, J. A. Kelber, H. S. T. Cao, G. T. Cantin, R. Lin, W. Wang, S. Kaushal, J. M. Bristow, T. S. Edgington, R. M. Hoffman, et al. (2010)
PNAS 107, 10920-10925
   Abstract »    Full Text »    PDF »
Understanding protein phosphorylation on a systems level.
J. Lin, Z. Xie, H. Zhu, and J. Qian (2010)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Lasp1 gene disruption is linked to enhanced cell migration and tumor formation.
H. Zhang, X. Chen, W. B. Bollag, R. J. Bollag, D. J. Sheehan, and C. S. Chew (2009)
Physiol Genomics 38, 372-385
   Abstract »    Full Text »    PDF »
Combined Integrin Phosphoproteomic Analyses and Small Interfering RNA-Based Functional Screening Identify Key Regulators for Cancer Cell Adhesion and Migration.
Y. Chen, B. Lu, Q. Yang, C. Fearns, J. R. Yates III, and J.-D. Lee (2009)
Cancer Res. 69, 3713-3720
   Abstract »    Full Text »    PDF »
Predicting Protein Post-translational Modifications Using Meta-analysis of Proteome Scale Data Sets.
D. Schwartz, M. F. Chou, and G. M. Church (2009)
Mol. Cell. Proteomics 8, 365-379
   Abstract »    Full Text »    PDF »
Localized Rho GTPase Activation Regulates RNA Dynamics and Compartmentalization in Tumor Cell Protrusions.
H. C. Stuart, Z. Jia, A. Messenberg, B. Joshi, T. M. Underhill, H. Moukhles, and I. R. Nabi (2008)
J. Biol. Chem. 283, 34785-34795
   Abstract »    Full Text »    PDF »
Methods for Pseudopodia Purification and Proteomic Analysis.
Y. Wang, S.-J. Ding, W. Wang, F. Yang, J. M. Jacobs, D. Camp II, R. D. Smith, and R. L. Klemke (2008)
Science Signaling 10, pl4
   Abstract »    Full Text »
Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network.
O. C. Pertz, Y. Wang, F. Yang, W. Wang, L. J. Gay, M. A. Gristenko, T. R. Clauss, D. J. Anderson, T. Liu, K. J. Auberry, et al. (2008)
PNAS 105, 1931-1936
   Abstract »    Full Text »    PDF »
Methods for Pseudopodia Purification and Proteomic Analysis.
Y. Wang, S.-J. Ding, W. Wang, F. Yang, J. M. Jacobs, D. Camp II, R. D. Smith, and R. L. Klemke (2007)
Sci. STKE 2007, pl4
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882