Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 104 (3): 819-822

Copyright © 2007 by the National Academy of Sciences.


Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase

Bin Zheng, and Lewis C. Cantley*

Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Systems Biology, Harvard Medical School, Boston, MA 02115

Contributed by Lewis C. Cantley, November 16, 2006

Received for publication November 10, 2006.

Abstract: AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that plays an important role in maintaining cellular energy balance. The activity of AMPK is modulated both by the cellular AMP-to-ATP ratio and by upstream kinases. Recently, AMPK was shown to be phosphorylated and activated by LKB1, a protein kinase that plays a conserved role in epithelial polarity regulation in mammals and Drosophila. Here, we investigate the involvement of AMPK in the regulation of epithelial tight junction assembly and cell polarization in MDCK cells. We show that the level of AMPK phosphorylation increases during calcium-induced tight junction assembly and cell polarization and that this increase depends on the kinase activity of LKB1. Expression of a kinase-dead mutant of AMPK inhibits tight junction assembly as indicated by measurement of transepithelial resistance and analysis of ZO-1 localization to the tight junction after calcium switch. Conversely, 5-aminoimidizole-4-carboxamide riboside, an activator of AMPK, promotes transepithelial resistance development and tight junction assembly upon calcium switch. Furthermore, 5-aminoimidizole-4-carboxamide riboside partially protects the tight junctions from disassembly induced by calcium depletion. These results support an important role of AMPK in the regulation of epithelial tight junction assembly and disassembly and suggest an intriguing link between cellular energy status and tight junction function.

Key Words: 5-aminoimidizole-4-carboxamide riboside • LKB1 • transepithelial resistance • Zo-1

Author contributions: B.Z. and L.C.C. designed research; B.Z. performed research; B.Z. and L.C.C. analyzed data; and B.Z. and L.C.C. wrote the paper.

The authors declare no conflict of interest.

*To whom correspondence should be addressed at: Division of Signal Transduction, Beth Israel Deaconess Medical Center, 77 Avenue Louis Pasteur, Room 1052, Boston, MA 02115. E-mail: lewis_cantley{at}

© 2007 by The National Academy of Sciences of the USA

Short-Chain Fatty Acids Activate AMP-Activated Protein Kinase and Ameliorate Ethanol-Induced Intestinal Barrier Dysfunction in Caco-2 Cell Monolayers.
E. E. Elamin, A. A. Masclee, J. Dekker, H.-J. Pieters, and D. M. Jonkers (2013)
J. Nutr. 143, 1872-1881
   Abstract »    Full Text »    PDF »
The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK.
T. Yano, T. Matsui, A. Tamura, M. Uji, and S. Tsukita (2013)
J. Cell Biol. 203, 605-614
   Abstract »    Full Text »    PDF »
Activation of the Ca2+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane.
F. Jouret, J. Wu, M. Hull, V. Rajendran, B. Mayr, C. Schofl, J. Geibel, and M. J. Caplan (2013)
J. Cell Sci. 126, 5132-5142
   Abstract »    Full Text »    PDF »
Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4.
J. I. Partanen, T. A. Tervonen, and J. Klefstrom (2013)
Phil Trans R Soc B 368, 20130111
   Abstract »    Full Text »    PDF »
LKB1 Controls Human Bronchial Epithelial Morphogenesis through p114RhoGEF-Dependent RhoA Activation.
X. Xu, D. Jin, J. Durgan, and A. Hall (2013)
Mol. Cell. Biol. 33, 2671-2682
   Abstract »    Full Text »    PDF »
Coordinated elevation of mitochondrial oxidative phosphorylation and autophagy help drive hepatocyte polarization.
D. Fu, K. Mitra, P. Sengupta, M. Jarnik, J. Lippincott-Schwartz, and I. M. Arias (2013)
PNAS 110, 7288-7293
   Abstract »    Full Text »    PDF »
AMPK phosphorylates GBF1 for mitotic Golgi disassembly.
L. Mao, N. Li, Y. Guo, X. Xu, L. Gao, Y. Xu, L. Zhou, and W. Liu (2013)
J. Cell Sci. 126, 1498-1505
   Abstract »    Full Text »    PDF »
Lkb1 regulates organogenesis and early oncogenesis along AMPK-dependent and -independent pathways.
B. Lo, G. Strasser, M. Sagolla, C. D. Austin, M. Junttila, and I. Mellman (2012)
J. Cell Biol. 199, 1117-1130
   Abstract »    Full Text »    PDF »
Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis.
P. S. Tanwar, T. Kaneko-Tarui, L. Zhang, and J. M. Teixeira (2012)
Hum. Mol. Genet. 21, 4394-4405
   Abstract »    Full Text »    PDF »
Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway.
Y. Gong, V. Renigunta, N. Himmerkus, J. Zhang, A. Renigunta, M. Bleich, and J. Hou (2012)
EMBO J. 31, 1999-2012
   Abstract »    Full Text »    PDF »
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia.
P. W. Seo-Mayer, G. Thulin, L. Zhang, D. S. Alves, T. Ardito, M. Kashgarian, and M. J. Caplan (2011)
Am J Physiol Renal Physiol 301, F1346-F1357
   Abstract »    Full Text »    PDF »
Adenosine monophosphate-activated kinase {alpha}1 promotes endothelial barrier repair.
J. Creighton, M. Jian, S. Sayner, M. Alexeyev, and P. A. Insel (2011)
FASEB J 25, 3356-3365
   Abstract »    Full Text »    PDF »
AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function.
D. G. Hardie (2011)
Genes & Dev. 25, 1895-1908
   Abstract »    Full Text »    PDF »
AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure.
C. Beauloye, L. Bertrand, S. Horman, and L. Hue (2011)
Cardiovasc Res 90, 224-233
   Abstract »    Full Text »    PDF »
Kv7.1 surface expression is regulated by epithelial cell polarization.
M. N. Andersen, S.-P. Olesen, and H. B. Rasmussen (2011)
Am J Physiol Cell Physiol 300, C814-C824
   Abstract »    Full Text »    PDF »
Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
D. Fu, Y. Wakabayashi, J. Lippincott-Schwartz, and I. M. Arias (2011)
PNAS 108, 1403-1408
   Abstract »    Full Text »    PDF »
Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1.
D. Fu, Y. Wakabayashi, Y. Ido, J. Lippincott-Schwartz, and I. M. Arias (2010)
J. Cell Sci. 123, 3294-3302
   Abstract »    Full Text »    PDF »
Interactome Mapping of the Phosphatidylinositol 3-Kinase-Mammalian Target of Rapamycin Pathway Identifies Deformed Epidermal Autoregulatory Factor-1 as a New Glycogen Synthase Kinase-3 Interactor.
F. Pilot-Storck, E. Chopin, J.-F. Rual, A. Baudot, P. Dobrokhotov, M. Robinson-Rechavi, C. Brun, M. E. Cusick, D. E. Hill, L. Schaeffer, et al. (2010)
Mol. Cell. Proteomics 9, 1578-1593
   Abstract »    Full Text »    PDF »
The apical (hPepT1) and basolateral peptide transport systems of Caco-2 cells are regulated by AMP-activated protein kinase.
M. Pieri, H. C. Christian, R. J. Wilkins, C. A. R. Boyd, and D. Meredith (2010)
Am J Physiol Gastrointest Liver Physiol 299, G136-G143
   Abstract »    Full Text »    PDF »
LKB1 Suppresses p21-activated Kinase-1 (PAK1) by Phosphorylation of Thr109 in the p21-binding Domain.
A. Deguchi, H. Miyoshi, Y. Kojima, K. Okawa, M. Aoki, and M. M. Taketo (2010)
J. Biol. Chem. 285, 18283-18290
   Abstract »    Full Text »    PDF »
Structure of the LKB1-STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation.
E. Zeqiraj, B. M. Filippi, M. Deak, D. R. Alessi, and D. M. F. van Aalten (2009)
Science 326, 1707-1711
   Abstract »    Full Text »    PDF »
AMP-activated Protein Kinase Mediates the Interferon-{gamma}-induced Decrease in Intestinal Epithelial Barrier Function.
M. Scharl, G. Paul, K. E. Barrett, and D. F. McCole (2009)
J. Biol. Chem. 284, 27952-27963
   Abstract »    Full Text »    PDF »
Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers.
L. Peng, Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin (2009)
J. Nutr. 139, 1619-1625
   Abstract »    Full Text »    PDF »
LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism.
M. Jansen, J. P. ten Klooster, G. J. Offerhaus, and H. Clevers (2009)
Physiol Rev 89, 777-798
   Abstract »    Full Text »    PDF »
AMPK in Health and Disease.
G. R. Steinberg and B. E. Kemp (2009)
Physiol Rev 89, 1025-1078
   Abstract »    Full Text »    PDF »
LKB1 regulates polarity remodeling and adherens junction formation in the Drosophila eye.
N. Amin, A. Khan, D. St. Johnston, I. Tomlinson, S. Martin, J. Brenman, and H. McNeill (2009)
PNAS 106, 8941-8946
   Abstract »    Full Text »    PDF »
Frequency and peak stretch magnitude affect alveolar epithelial permeability.
T. S. Cohen, K. J. Cavanaugh, and S. S. Margulies (2008)
Eur. Respir. J. 32, 854-861
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans AMP-activated Protein Kinase AAK-2 Is Phosphorylated by LKB1 and Is Required for Resistance to Oxidative Stress and for Normal Motility and Foraging Behavior.
H. Lee, J. S. Cho, N. Lambacher, J. Lee, S.-J. Lee, T. H. Lee, A. Gartner, and H.-S. Koo (2008)
J. Biol. Chem. 283, 14988-14993
   Abstract »    Full Text »    PDF »
Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms.
A. F. Hezel, S. Gurumurthy, Z. Granot, A. Swisa, G. C. Chu, G. Bailey, Y. Dor, N. Bardeesy, and R. A. DePinho (2008)
Mol. Cell. Biol. 28, 2414-2425
   Abstract »    Full Text »    PDF »
{alpha}2 but Not {alpha}1 AMP-activated Protein Kinase Mediates Oxidative Stress-induced Inhibition of Retinal Pigment Epithelium Cell Phagocytosis of Photoreceptor Outer Segments.
S. Qin and G. W. De Vries (2008)
J. Biol. Chem. 283, 6744-6751
   Abstract »    Full Text »    PDF »
The Tumor Suppressor LKB1 Regulates Lung Cancer Cell Polarity by Mediating cdc42 Recruitment and Activity.
S. Zhang, K. Schafer-Hales, F. R. Khuri, W. Zhou, P. M. Vertino, and A. I. Marcus (2008)
Cancer Res. 68, 740-748
   Abstract »    Full Text »    PDF »
Loss of Lkb1 Provokes Highly Invasive Endometrial Adenocarcinomas.
C. M. Contreras, S. Gurumurthy, J. M. Haynie, L. J. Shirley, E. A. Akbay, S. N. Wingo, J. O. Schorge, R. R. Broaddus, K.-K. Wong, N. Bardeesy, et al. (2008)
Cancer Res. 68, 759-766
   Abstract »    Full Text »    PDF »
LKB1 Deficiency Sensitizes Mice to Carcinogen-Induced Tumorigenesis.
S. Gurumurthy, A. F. Hezel, J. H. Berger, M. W. Bosenberg, and N. Bardeesy (2008)
Cancer Res. 68, 55-63
   Abstract »    Full Text »    PDF »
Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells.
M. Dixit, E. Bess, B. Fisslthaler, F. V. Hartel, T. Noll, R. Busse, and I. Fleming (2008)
Cardiovasc Res 77, 160-168
   Abstract »    Full Text »    PDF »
Dialogue Between LKB1 and AMPK: A Hot Topic at the Cellular Pole.
C. Forcet and M. Billaud (2007)
Sci. STKE 2007, pe51
   Abstract »    Full Text »    PDF »
Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization.
J. I. Partanen, A. I. Nieminen, T. P. Makela, and J. Klefstrom (2007)
PNAS 104, 14694-14699
   Abstract »    Full Text »    PDF »
Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity.
J. J. Eckert, F. D. Houghton, J. A. Hawkhead, A. H. Balen, H. J. Leese, H. M. Picton, I. T. Cameron, and T. P. Fleming (2007)
Hum. Reprod. 22, 2214-2224
   Abstract »    Full Text »    PDF »
LKB1 and AMPK maintain epithelial cell polarity under energetic stress.
V. Mirouse, L. L. Swick, N. Kazgan, D. St Johnston, and J. E. Brenman (2007)
J. Cell Biol. 177, 387-392
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882