Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 104 (36): 14348-14353

Copyright © 2007 by the National Academy of Sciences.


Spatial regulation of Raf kinase signaling by RKTG

Lin Feng, Xiaoduo Xie, Qiurong Ding, Xiaolin Luo, Jing He, Fengjuan Fan, Weizhong Liu, Zhenzhen Wang, and Yan Chen*

Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China

Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved July 18, 2007

Received for publication February 12, 2007.

Abstract: Subcellular compartmentalization has become an important theme in cell signaling such as spatial regulation of Ras by RasGRP1 and MEK/ERK by Sef. Here, we report spatial regulation of Raf kinase by RKTG (Raf kinase trapping to Golgi). RKTG is a seven-transmembrane protein localized at the Golgi apparatus. RKTG expression inhibits EGF-stimulated ERK and RSK phosphorylation, blocks NGF-mediated PC12 cell differentiation, and antagonizes Ras- and Raf-1-stimulated Elk-1 transactivation. Through interaction with Raf-1, RKTG changes the localization of Raf-1 from cytoplasm to the Golgi apparatus, blocks EGF-stimulated Raf-1 membrane translocation, and reduces the interaction of Raf-1 with Ras and MEK1. In RKTG-null mice, the basal ERK phosphorylation level is increased in the brain and liver. In RKTG-deleted mouse embryonic fibroblasts, EGF-induced ERK phosphorylation is enhanced. Collectively, our results reveal a paradigm of spatial regulation of Raf kinase by RKTG via sequestrating Raf-1 to the Golgi apparatus and thereby inhibiting the ERK signaling pathway.

Key Words: EGF • ERK • Golgi • Raf-1 • Ras • PAQR3

Author contributions: L.F. and Y.C. designed research; L.F., X.X., Q.D., X.L., J.H., F.F., and W.L. performed research; L.F., Z.W., and Y.C. analyzed data; and L.F. and Y.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

*To whom correspondence should be addressed at: Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China. E-mail: ychen3{at}

© 2007 by The National Academy of Sciences of the USA

PAQR3 Modulates Insulin Signaling by Shunting Phosphoinositide 3-Kinase p110{alpha} to the Golgi Apparatus.
X. Wang, L. Wang, L. Zhu, Y. Pan, F. Xiao, W. Liu, Z. Wang, F. Guo, Y. Liu, W. G. Thomas, et al. (2013)
Diabetes 62, 444-456
   Abstract »    Full Text »    PDF »
Tollip, an Intracellular Trafficking Protein, Is a Novel Modulator of the Transforming Growth Factor-{beta} Signaling Pathway.
L. Zhu, L. Wang, X. Luo, Y. Zhang, Q. Ding, X. Jiang, X. Wang, Y. Pan, and Y. Chen (2012)
J. Biol. Chem. 287, 39653-39663
   Abstract »    Full Text »    PDF »
PAQR3 Plays a Suppressive Role in the Tumorigenesis of Colorectal Cancers.
X. Wang, X. Li, F. Fan, S. Jiao, L. Wang, L. Zhu, Y. Pan, G. Wu, Z.-Q. Ling, J. Fang, et al. (2012)
Carcinogenesis 33, 2228-2235
   Abstract »    Full Text »    PDF »
Progesterone and AdipoQ Receptor 11 Links Ras Signaling to Cardiac Development in Zebrafish.
H. Huang, T. Jin, J. He, Q. Ding, D. Xu, L. Wang, Y. Zhang, Y. Pan, Z. Wang, and Y. Chen (2012)
Arterioscler Thromb Vasc Biol 32, 2158-2170
   Abstract »    Full Text »    PDF »
Raft Protein Clustering Alters N-Ras Membrane Interactions and Activation Pattern.
S. Eisenberg, A. J. Beckett, I. A. Prior, F. J. Dekker, C. Hedberg, H. Waldmann, M. Ehrlich, and Y. I. Henis (2011)
Mol. Cell. Biol. 31, 3938-3952
   Abstract »    Full Text »    PDF »
Research Advances at the Institute for Nutritional Sciences at Shanghai, China.
Y. Chen, X. Lin, Y. Liu, D. Xie, J. Fang, Y. Le, Z. Ke, Q. Zhai, H. Wang, F. Guo, et al. (2011)
Adv Nutr 2, 428-439
   Abstract »    Full Text »    PDF »
Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis.
X. Luo, Y. Zhang, X. Ruan, X. Jiang, L. Zhu, X. Wang, Q. Ding, W. Liu, Y. Pan, Z. Wang, et al. (2011)
Diabetes 60, 1435-1445
   Abstract »    Full Text »    PDF »
Signaling at the Golgi.
P. Mayinger (2011)
Cold Spring Harb Perspect Biol 3, a005314
   Abstract »    Full Text »    PDF »
Functional Cooperation of RKTG with p53 in Tumorigenesis and Epithelial-Mesenchymal Transition.
Y. Jiang, X. Xie, Z. Li, Z. Wang, Y. Zhang, Z. Ling, Y. Pan, Z. Wang, and Y. Chen (2011)
Cancer Res. 71, 2959-2968
   Abstract »    Full Text »    PDF »
Ras, an Actor on Many Stages: Posttranslational Modifications, Localization, and Site-Specified Events.
I. Arozarena, F. Calvo, and P. Crespo (2011)
Genes & Cancer 2, 182-194
   Abstract »    Full Text »    PDF »
The ERK Cascade: Distinct Functions within Various Subcellular Organelles.
I. Wortzel and R. Seger (2011)
Genes & Cancer 2, 195-209
   Abstract »    Full Text »    PDF »
Raf Family Kinases: Old Dogs Have Learned New Tricks.
D. Matallanas, M. Birtwistle, D. Romano, A. Zebisch, J. Rauch, A. von Kriegsheim, and W. Kolch (2011)
Genes & Cancer 2, 232-260
   Abstract »    Full Text »    PDF »
Signalling to and from the secretory pathway.
H. Farhan and C. Rabouille (2011)
J. Cell Sci. 124, 171-180
   Abstract »    Full Text »    PDF »
Homodimerization of Nemo-like kinase is essential for activation and nuclear localization.
S. Ishitani, K. Inaba, K. Matsumoto, and T. Ishitani (2011)
Mol. Biol. Cell 22, 266-277
   Abstract »    Full Text »    PDF »
Glucocorticoid-induced Leucine Zipper 1 Stimulates the Epithelial Sodium Channel by Regulating Serum- and Glucocorticoid-induced Kinase 1 Stability and Subcellular Localization.
R. Soundararajan, J. Wang, D. Melters, and D. Pearce (2010)
J. Biol. Chem. 285, 39905-39913
   Abstract »    Full Text »    PDF »
Regulation of G-Protein Signaling by RKTG via Sequestration of the G{beta}{gamma} Subunit to the Golgi Apparatus.
Y. Jiang, X. Xie, Y. Zhang, X. Luo, X. Wang, F. Fan, D. Zheng, Z. Wang, and Y. Chen (2010)
Mol. Cell. Biol. 30, 78-90
   Abstract »    Full Text »    PDF »
Activation of the MAPK Module from Different Spatial Locations Generates Distinct System Outputs.
K. Inder, A. Harding, S. J. Plowman, M. R. Philips, R. G. Parton, and J. F. Hancock (2008)
Mol. Biol. Cell 19, 4776-4784
   Abstract »    Full Text »    PDF »
Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.
X. Xie, Y. Zhang, Y. Jiang, W. Liu, H. Ma, Z. Wang, and Y. Chen (2008)
Carcinogenesis 29, 1632-1638
   Abstract »    Full Text »    PDF »
RKTG sequesters B-Raf to the Golgi apparatus and inhibits the proliferation and tumorigenicity of human malignant melanoma cells.
F. Fan, L. Feng, J. He, X. Wang, X. Jiang, Y. Zhang, Z. Wang, and Y. Chen (2008)
Carcinogenesis 29, 1157-1163
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882